
CHEMISTRY JEE-MAIN (September-Attempt) 2 September (Shift-1) Paper

SECTION - A

1. The increasing order of the following compounds towards HCN addition is:

Sol. 1

In HCN, CN^- is acts as nucleophile, attack first that -CHO group which has maximum positive charge. The magnitude of the (+ve) charge increases by -M and -I group. So reactivity order will be

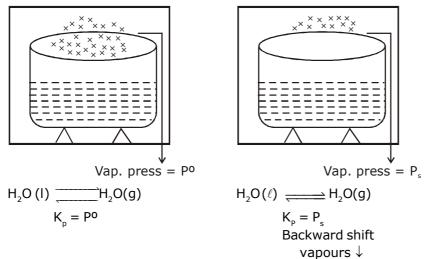
$$CHO$$
 > CHO > CHO

So, option (1) is correct answer.

- **2.** Which of the following is used for the preparation of colloids?
 - (1) Van Arkel Method
- (2) Ostwald Process

(3) Mond Process

(4) Bredig's Arc Method


Sol. 4

Bredig's Arc method

Chapter name surface chemistry

- **3.** An open beaker of water in equilibrium with water vapour is in a sealed container. When a few grams of glucose are added to the beaker of water, the rate at which water molecules:
 - (1) leaves the vapour increases
- (2) leaves the solution increases
- (3) leaves the vapour decreases
- (4) leaves the solution decreases

Sol. 1

Hence Rate at which water molecules leaves the vap. increases.

- **4.** For octahedral Mn(II) and tetrahedral Ni(II) complexes, consider the following statements:
 - (I) both the complexes can be high spin.
 - (II) Ni(II) complex can very rarely be low spin.
 - (III) with strong field ligands, Mn(II) complexes can be low spin.
 - (IV) aqueous solution of Mn(II) ions is yellow in colour.

The correct statements are:

- (1) (I), (III) and (IV) only
- (2) (I), (II) and (III) only

nkers

- (3) (II), (III) and (IV) only
- (4) (I) and (II) only

Sol. 2

 Mn^{2+} [Ar]3d⁵ it can form low spin as well as high spin complex depending upon nature of ligand same of Ni²⁺ ion with coordination no 4. It can be dsp² or sp³ i:e low spin or high spin depending open nature of ligand.

- **5.** The statement that is not true about ozone is:
 - (1) in the stratosphere, it forms a protective shield against UV radiation.
 - (2) in the atmosphere, it is depleted by CFCs.
 - (3) in the stratosphere, CFCs release chlorine free radicals (CI) which reacts with O_3 to give chlorine dioxide radicals.
 - (4) it is a toxic gas and its reaction with NO gives NO₂.

Sol. 3

$$\dot{C}I + O_3 \longrightarrow CI \dot{O} + O_2$$

Chlorine monoxide

Hence option (3)

6. Consider the following reactions:

(i) Glucose + ROH
$$\xrightarrow{\text{dry HCl}}$$
 Acetal $\xrightarrow{\text{x eq. of}}$ acetyl derivative

(ii) Glucose
$$\xrightarrow{\text{Ni/H}_2}$$
 A $\xrightarrow{\text{y eq. of}}$ acetyl derivative

(iii) Glucose
$$\frac{z \text{ eq. of}}{(CH_3CO)_2O)}$$
 acetyl derivative

'x', 'y' and 'z' in these reactions are respectively.

(i) Glucose + ROH
$$\xrightarrow{\text{dry}\,\text{HCl}}$$
 $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$

(ii) Glucose
$$\xrightarrow{\text{Ni/H}_2}$$
 CH_2OH $\xrightarrow{\text{6 eq of} \atop \text{(CH}_3\text{CO})_2\text{O}}$ acetyl derivative $\overset{\text{I}}{\text{CH}_2\text{OH}}$ $\overset{\text{CH}_2\text{OH}}{\text{CH}_2\text{OH}}$

(iii) Glucose
$$\frac{5 \text{ eq. of}}{(\text{CH}_3\text{CO})_2\text{O}} \rightarrow \text{Acetyl derivative}$$

 $(CH_3CO)_2O$ reacts with -OH group to form acetyl derivative, so as the no. of -OH group no. of eq. of $(CH_3CO)_2O$ will be used

So,
$$x = 4$$

y = 6

z = 5

So, option (4) will be correct answer.

7. The IUPAC name for the following compound is:

- (1) 2,5-dimethyl-5-carboxy-hex-3-enal
- (2) 2,5-dimethyl-6-oxo-hex-3-enoic acid
- (3) 6-formyl-2-methyl-hex-3-enoic acid
- (4) 2,5-dimethyl-6-carboxy-hex-3-enal

2,5-Dimethyl-6-oxohex-3-enoic acid

8. For the following Assertion and Reason, the correct option is

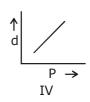
Assertion (A): When Cu (II) and sulphide ions are mixed, they react together extremely quickly to give a solid.

Reason (R): The equilibrium constant of $Cu^{2+}(aq) + S^{2-}(aq) \rightleftharpoons CuS$ (s) is high because the solubility product is low.

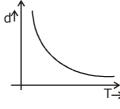
- (1) (A) is false and (R) is true.
- (2) Both (A) and (R) are false.
- (3) Both (A) and (R) are true but (R) is not the explanation for (A).
- (4) Both (A) and (R) are true but (R) is the explanation for (A).

Sol. 4

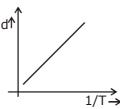
- (A) is (B) true &
- (R) is correct explanation of (A)


Ans. 4

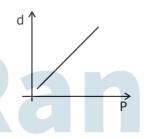
9. Which one of the following graphs is not correct for ideal gas?



d = Density, P = Pressure, T = Temperature


- (1) I
- (2) IV
- (3) III
- (4) II

$$d = \frac{P \times M}{RT}$$


 $d v/s T \rightarrow Hyperbolic$

d v/s $\frac{1}{T}$ \rightarrow St. line

 $d v/s p \rightarrow St line$

kers

∴ 'II' Graph is incorrect Ans (4)

- **10.** While titrating dilute HCl solution with aqueous NaOH, which of the following will not be required?
 - (1) Bunsen burner and measuring cylinder
- (2) Burette and porcelain tile

(3) Clamp and phenolphthalein

(4) Pipette and distilled water

Sol. 1

Bunsen Burner & measuring cylinder are not Required. As titration is already on exothermic process

Ans.(1)

11. In Carius method of estimation of halogen, 0.172 g of an organic compound showed presence of 0.08 g of bromine. Which of these is the correct structure of the compound?

mass % of `Br' =
$$\frac{0.08}{0.172} \times 100 = \frac{8000}{172} = 46.51\%$$

option (1) mass % =
$$\frac{80}{95} \times 100$$

(2) mass % =
$$\frac{2 \times 80 \times 100}{252}$$

(3) mass % =
$$\frac{1 \times 80 \times 100}{80 + 72 + 6 + 14} = \frac{8000}{172}$$
%

(4) mass % =
$$\frac{1 \times 80 \times 100}{109}$$
 %

Option (3) matches with the given mass percentage value Ans (3)

- 12. On heating compound (A) gives a gas (B) which is a constituent of air. This gas when treated with H₂ in the presence of a catalyst gives another gas (C) which is basic in nature. (A) should not be:
- Sol. The gas (B) is N₂ which is found in air
- $(3) NH_4NO_2$
- $(4) Pb(NO_3)_2$

 $N_2 + 3H_2 \xrightarrow{Fe/Mo} 2NH_3$ (Haber's process)

$$NH_3 + H_2O \rightarrow NH_4OH$$
 (weak base)

$$(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + H_2O$$

 $NaN_3 \longrightarrow N_2 + Na$
 $NH_4NO_2 \longrightarrow N_2 + H_2O$
 $Pb(NO_3)_2 \longrightarrow PbO + NO_2 + O_2$

$$NaN_3 \longrightarrow N_2 + Na$$

$$NH_4NO_2 \longrightarrow N_2 + H_2O_2$$

$$Pb(\mathring{NO}_3^2)_2 \longrightarrow \mathring{P}bO + \mathring{NO}_2 + O_2$$

13. The major product in the following reaction is:

$$\begin{array}{c|c} H_3C & CH = CH_2 \\ \hline & & H_3O^+ \\ \hline & & Heat \end{array}$$

$$CH = CH_{2} \xrightarrow{H_{3}O^{+}} CH - CH_{3}$$

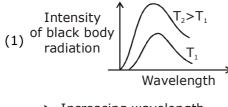
$$\downarrow Ring expansion$$

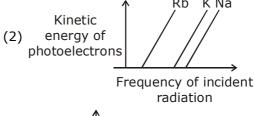
$$H = CH_{2} \xrightarrow{H_{3}O^{+}} CH - CH_{3}$$

Option (3) is correct answer.

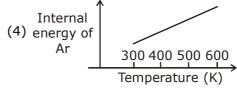
- **14.** In general, the property (magnitudes only) that shows an opposite trend in comparison to other properties across a period is:
 - (1) Ionization enthalpy

(2) Electronegativity


(3) Atomic radius


(4) Electron gain enthalpy

Sol. 3


Ionisation energy, electronegativity & electron gain enthalpy increase across a period but atomic radius decreases

15. The figure that is not a direct manifestation of the quantum nature of atoms is:

Internal energy of 'Ar' or any gas, has nothing to do with Quantum nature of atom hence

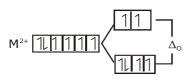
Ans. option (4)

16. The major aromatic product C in the following reaction sequence will be :

$$\begin{array}{c}
\text{HBr} \\
\text{(excess)} \\
\hline
\Delta
\end{array}
\xrightarrow{\text{(i) KOH (Alc.)}}
\xrightarrow{\text{B}}
\begin{array}{c}
O_3 \\
\hline
Zn/H_3O^+
\end{array}
\xrightarrow{\text{C}}$$

(1)
$$\bigcirc$$
 CHO (2) \bigcirc OH \bigcirc CO₂H (3)

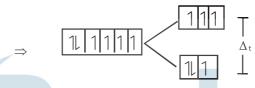
Sol. 3


$$\begin{array}{c}
 & \xrightarrow{\mathsf{HBr}(\mathsf{excess})} \\
 & \xrightarrow{\mathsf{A}}
\end{array}$$

$$\begin{array}{c}
\mathsf{Br} \\
 & \downarrow(\mathsf{i}) \mathsf{KOH} \; \mathsf{(Alc)} \\
 & \downarrow(\mathsf{ii}) \; \mathsf{H}^+
\end{array}$$

$$\begin{array}{c}
\mathsf{OH} \\
 & \longleftarrow(\mathsf{i})\mathsf{O}_3 \\
 & \longleftarrow(\mathsf{ii}) \; \mathsf{Zn/H}_3\mathsf{O}^+
\end{array}$$

Option (3) is correct answser.


- 17. Consider that a d⁶ metal ion (M²⁺) forms a complex with aqua ligands, and the spin only magnetic moment of the complex is 4.90 BM. The geometry and the crystal field stabilization energy of the complex is:
 - (1) tetrahedral and $-0.6\Delta_t$ (3) octahedral and $-1.6\Delta_0$
- (2) tetrahedral and $-1.6\Delta_{+} + 1P$
- (4) octahedral and $-2.4\Delta_0 + 2P$

 μ spin = 4.9 BM

$$CFSE = -0.4 \times 4\Delta_0 + 0.6 \times 2\Delta_0$$

=
$$[1.6 + 1.2]\Delta_0$$

= $-0.4\Delta_0$

CFSE =
$$-0.6 \times 3\Delta_{t} + 0.4 \times 3\Delta_{t}$$

= $-1.8 \Delta_{t} + 1.2\Delta_{t}$
= $-0.6 \Delta_{t}$

- If AB₄ molecule is a polar molecule, a possible geometry of AB₄ is: 18.
 - (1) Square planar

(2) Tetrahedral

(3) Square pyramidal

(4) Rectangular planar

Sol.

Incorrect question Option 1 is more appropriate with respect to given option (Chemical bonding)

(Options are incorrect)

19. Which of the following compounds will show retention in configuration on nucleophilic substitution by OH- ion?

(1)
$$CH_3-CH-CH_2Br$$
 (2) $CH_3-CH-Br$ (3) CH_3-C-H (4) $CH_3-CH-Br$ I I C_9H_5 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5

> In CH₃-CH-CH₂Br attack of OH⁻ is not on chiral carbon, it is adjacent to chiral carbon, so configu-C₂H₅

ration of chiral carbon remains constant.

20. The metal mainly used in devising photoelectric cells is:

Sol. 2

'Cs' is used in photoelectric cell as its ionisation energy is lowest

21. The mass of gas adsorbed, x, per unit mass of adsorbate, m, was measured at various pressures, p.

A graph between $\log \frac{x}{m}$ and $\log p$ gives a straight line with slope equal to 2 and the intercept equal

to 0.4771. The value of
$$\frac{x}{m}$$
 at a pressure of 4 atm is: (Given log3 = 0.4771)

Sol.

$$\frac{x}{m} = KP^{1/n}$$

$$\log (x/m) = \log_{(k)} + \frac{1}{n} \log(p)$$

$$y = c + mx$$

$$y = c + mx$$

Intercept $C = log_k = 0.4771$

$$slop = \frac{1}{n} = 2, k = 3$$

$$\frac{x}{m}$$
 = k(P)^{1/n} at P = 4 atm
= 3(4)²

$$\frac{x}{m} = 3 \times 16 = 48 \text{ Ans}$$

The Gibbs energy change (in J) for the given reaction at $[Cu^{2+}] = [Sn^{2+}] = 1$ M and 298 K is: 22. $Cu(s) + Sn^{2+}(aq.) \rightarrow Cu^{2+}(aq.) + Sn(s)$

(
$$E_{Sn^{2+}|Sn}^{o} = -0.16$$
V, $E_{Cu^{2+}|Cu}^{o} = 0.34$ V, Take F = 96500 C mol⁻¹)

Sol.

$$Cu(s) + Sn^{+2}(aq) \rightleftharpoons Cu^{+2}(aq) + Sn(s)$$

$$E_{\text{cell}}^{\text{O}} = -0.16 - 0.34$$

= -0.50

$$\Delta G^0 = -nF E^0$$

$$= -2 \times 96500 \times (-0.5)$$

$$\Delta G = \Delta G^{0} + RT \ell nQ$$

$$= 96500 + \frac{25}{3} \times 298 \times 2.303 \log (1)$$

$$\Lambda G = 96500 \text{ Joules}$$

23. The internal energy change (in J) when 90 g of water undergoes complete evaporation at 100° C is ______.

(Given: ΔH_{vap} for water at 373 K = 41 kJ/mol, R = 8.314 JK $^{\!-1}$ mol $^{\!-1}$)

Sol. $H_2O(\ell) \longrightarrow H_2O(g)$

 $\Delta E_{\text{vap}} = \Delta H_{\text{vap}} - \Delta ngRT$ = 41000 × 5 - 5 × 8.314× 373 = 189494.39

24. The oxidation states of iron atoms in compounds (A), (B) and (C), respectively, are x, y and z. The sum of x, y and z is _____.

Sol. 6

 $Na_4 [Fe^{+2}(CN)_5(NOS)]$ $Na_4 [Fe^{+4}O_4]$ $[Fe_2^{0}(CO)_9]$

25. The number of chiral carbons present in the molecule given below is _____

H₃C C C CH₃

Sol. 5

H₃C OH CH₃

Total chiral carbon = 5