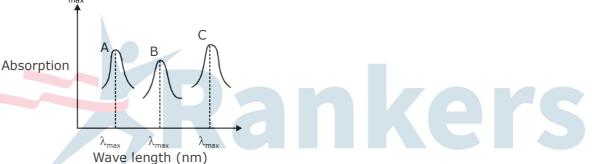
CHEMISTRY JEE-MAIN (September-Attempt) 2 September (Shift-2) Paper

SECTION - A

- **1.** Cast iron is used for the manufacture of :
 - (1) Wrought iron and steel
- (2) Wrought iron and pig iron
- (3) Wrougth iron, pig iron and steel
- (4) Pig iron, scrap iron and steel


Sol. 1

Refer topic metallurgy

- **2.** The shape/structure of $[XeF_5]^-$ and XeO_3F_2 , respectively, are :
 - (1) Pentagonal planar and trigonal bipyramidal
 - (2) Trigonal bipyramidal and trigonal bipyramidal
 - (3) Octahedral and square pyramidal
 - (4) Trigonal bipyramidal and pentagonal planar
- Sol. 1

[XeF₅]⁻ $5BP + 2LP = 7VSEP \Rightarrow sp^3d^3$ hybridisation XeO_3F_2 $5BP + 0LP = 5VSEP \Rightarrow sp^3d$ hybridisation

Simplified absorption spectra of three complexes ((i), (ii) and (iii)) of M^{n+} ion are provided below; their λ_{max} values are marked as A, B and C respectively. The correct match between the complexes and their λ_{max} values is :

- (i) $[M(NCS)_6]^{(-6+n)}$
- (ii) $[MF_6]^{(-6+n)}$
- (iii) $[M(NH_3)_6]^{n+}$
- (1) A-(i), B-(ii), C-(iii)
- (3) A-(ii), B-(iii), C-(i)

- (2) A-(iii), B-(i), C-(ii)
- (4) A-(ii), B-(i), C-(iii)

Sol. 2

$$\Delta = \frac{\text{hc}}{\lambda_{\text{absorbedf(max)}}}$$

 $A \rightarrow NH_3$ comp (iii)

 $B \rightarrow NCS comp (i)$

 $C \rightarrow F^- comp (ii)$

using spectrochemical series of ligand

 $F^- < NCS^- < NH_3$ order of Δ +e crystal field spliting energy

So. NH₃ complex \rightarrow A

F- complex - C

 $NCS^- complex \rightarrow B$

4. The correct observation in the following reactions is:

Sucrose
$$\xrightarrow{Gly \text{ cosidic bond}} A + B \xrightarrow{Seliwanoff's} ?$$
Cleavage (Hydrolysis)

- (1) Formation of red colour
- (3) Formation of violet colour
- (2) Formation of blue colour
- (4) Gives no colour

Sol.

$$Sucrose \xrightarrow{Gly \, cosidic \, bond} Glu \, cos \, e + Fructose \xrightarrow{Seliwanoff's} Re \, d \, Colour$$

The results given in the below table were obtained during kinetic studies of the following reaction: 5.

$2A + D \rightarrow C + D$				
Experiment	[A]/	[B]/	Initial rate/	
	molL ^{−1}	molL ^{−1}	molL ⁻¹ min ⁻¹	
I	0.1	0.1	6.00×10^{-3}	
II	0.1	0.2	2.40×10^{-2}	
III	0.2	0.1	1.20×10^{-2}	
IV	Χ	0.2	7.20×10^{-2}	
V	0.3	Υ	2.88×10^{-1}	

X and Y in the given table are respectively:

Exp. (I)
$$6 \times 10^{-3} = K (0.1)^p (0.1)^q$$

(II) $2.4 \times 10^{-2} = K (0.1)^p (0.2)^q$
(III) $1.2 \times 10^{-2} = K (0.2)^p (0.1)^q$

(II)
$$2.4 \times 10^{-2} = K(0.1)^p (0.2)^q$$

III)
$$1.2 \times 10^{-2} = K (0.2)^p (0.1)^q$$

$$\frac{\exp(I)}{\exp(II)} \qquad \frac{1}{4} = \left(\frac{1}{2}\right)^{q} \Rightarrow q = 2$$

$$\frac{\text{Exp.(I)}}{\text{Exp.(III)}} \qquad \frac{1}{2} = \left(\frac{1}{2}\right)^{p} \Rightarrow p = 1$$

$$exp. (I) \div exp (IV)$$

$$\frac{0.6 \times 10^{-2}}{7.2 \times 10^{-2}} = \left(\frac{0.1}{x}\right)^{1} \cdot \left[\frac{0.1}{0.2}\right]^{2}$$

$$\frac{1}{12} = \frac{0.1}{x} - \frac{1}{4}$$

$$[x] = 0.3$$

$$exp(I) \div exp(V)$$

$$\frac{0.6 \times 10^{-2}}{2.88 \times 10^{-1}} \; = \left(\frac{0.1}{0.3}\right)^{\! 1} \times \! \left(\frac{0.1}{y}\right)^{\! 2}$$

$$\frac{1}{48} = \frac{1}{3} \times \frac{10^{-2}}{y^2} \Rightarrow y^2 = 0.16$$

$$y = 0.4$$

Α

В

- (I) ion-ion
- (a) $\frac{1}{r}$
- (II) dipole-dipole
- (b) $\frac{1}{r^2}$
- (III) London dispersion
- (c) $\frac{1}{r^3}$
- (d) $\frac{1}{r^6}$
- (1) (I)-(a), (II)-(b), (III)-(d)
- (2) (I)-(a), (II)-(b), (III)-(c)
- (3) (I)-(b), (II)-(d), (III)-(c)
- (4) (I)-(a), (II)-(c), (III)-(d)

Sol. 4

ion - ion $\alpha \frac{1}{r}$

dipole – dipole $\alpha \frac{1}{r^3}$

Londong dispersion $\alpha \frac{1}{r^6}$

7. The major product obtained from E_2 – elimination of 3-bromo-2-fluoropentane is :

$$(1) \begin{array}{c} CH_3CH_2CH=C-F \\ CH_3 \\ CH_3 \end{array}$$

$$C - C - C - C - C - C \xrightarrow{\text{E}_2 'elin'} CH_3 - CH_2 - CH = C - CH_3$$

$$\downarrow F$$

8. Consider the reaction sequence given below :

Which of the following statements is true:

- (1) Changing the concentration of base will have no effect on reaction (1).
- (2) Doubling the concentration of base will double the rate of both the reactions.
- (3) Changing the base from OH° to ${}^{\circ}OR$ will have no effect on reaction (2).
- (4) Changing the concentration of base will have no effect on reaction (2).
- Sol. 1

$$CH_{3} - C - Br \xrightarrow{OH^{-}/H_{2}O} CH_{3} - C - OH + Br^{\Theta}$$

$$CH_{3} - C - Br \xrightarrow{OH^{-}/H_{2}O} CH_{3} - C - OH + Br^{\Theta}$$

$$CH_{3} - C - OH + Br^{\Theta}$$

$$CH_{3}$$

- **9.** The size of a raw mango shrinks to a much smaller size when kept in a concentrated salt solution. Which one of the following process can explain this?
 - (1) Diffusion

(2) Osmosis

(3) Reverse osmosis

(4) Dialysis

Sol. 2

Theoritical
Ans. Osmosis

Option (2)

- **10.** If you spill a chemical toiled cleaning liquid on your hand, your first aid would be :
 - (1) Aqueous NH,

(2) Aqueous NaHCO₃

(3) Aqueous NaOH

(4) Vinegar

Sol. 2

Fact

11. Arrange the followig labelled hydrogens in decreasing order of acidity:

$$\begin{array}{c|c}
 & \text{NO}_2 & \text{C=C-} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C} & \text{C} & \text{C} & \text{C} \\
 & \text{C$$

- (1) b > a > c > d
- (3) c > b > d > a

(2) b > c > d > a (4) c > b > a > d

Sol. 2

Order of acidic strength

COOH COOH OH
$$| O | O | O | R - C \equiv CH$$

$$| NO_2 | O | NO_2$$

- An organic compound 'A' ($C_9H_{10}O$) when treated with conc. HI undergoes cleavage to yield compounds 'B' and 'C'. 'B' gives yellow precipitate with AgNO₃ where as 'C' tautomerizes to 'D'. 'D' gives positive iodoform test. 'A' could be :
 - (1) CH₂-O-CH=CH₂
- (2) $H_3C O-CH = CH_2$
- (3) O-CH₂-CH=CH
- (4) $\langle \rangle$ O-CH=CH=CH₃

Sol. 1

$$CH_2 - O - CH = CH_2$$
 $CH_2 - I + HO - CH = CH_2$
 $CH_3 - CH = O$
 $CH_3 - CH$

- **13.** Two elements A and B have similar chemical properties. They don't form solid hydrogencarbonates, but react with nitrogen to form nitrides. A and B, respectively, are:
 - (1) Na and Ca

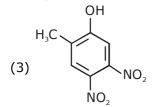
(2) Cs and Ba

(3) Na and Rb

(4) Li and Mg

Sol. 4

LiHCO₃ & Mg(HCO₃)₂ does not exist in solid form but both forms nitrides with nitrogen gas


- 14. The number of subshells associated with n = 4 and m = -2 quantum numbers is :
- (1) 4
- (2)8
- (3) 2
- (4) 16

- Sol. 3
 - n = 4
 - $\ell = 0$
- m = 0
- $\ell = 1$ $\ell = 2$
- m = -1, 0, +1
- m = -2, +2, -1, +1, 0
- $\ell = 3$
- $m = \pm 3, \pm 2, \pm 1, 0$

'2' Subshells Ans.

- Option (3)
- **15**. The major product of the following reaction is:

$$\begin{array}{c} H_3C \\ O_2N \end{array}$$

16. Two compounds A and B with same molecular formula (C_3H_6O) undergo Grignard's reaction with methylmagnesium bromide to give products C and D. Products C and D show following chemical tests.

Test	С	D
Ceric ammonium nitrate Test	Positive	Positive
Lucas Test	Turbidity obtained after five minutes	Turbidity obtained immediately
Iodoform Test	Positive	Negative

C and D respectively are:

$$\begin{array}{c} \mathsf{D} \! = \! \mathsf{H}_3 \mathsf{C} \! - \! \mathsf{C} \mathsf{H}_2 \! - \! \mathsf{C} \mathsf{H} \! - \! \mathsf{C} \mathsf{H}_3 \\ | \\ \mathsf{O} \mathsf{H} \end{array}$$

$$CH_{3} - CH_{2} - CH - CH_{3} \xrightarrow{\text{Lucas test}} \text{turbidity obtain after 5 min}$$

$$(2^{\circ} - \text{alc}) \xrightarrow{\text{Lucas test}} \text{CHI}_{3}$$

$$CH_{3} - C - OH \xrightarrow{\text{Lucas test}} \text{turbidity obtain immediately}$$

$$CH_{3} - C - OH \xrightarrow{\text{Lucas test}} \text{No reaction}$$

- **17.** Three elements X, Y and Z are in the 3rd peroid of the periodic table. The oxides of X, Y and Z, respectively, are basic, amphoteric and acidic, The correct order of the atomic numbers of X, Y and Z is:
 - (1) X < Y < Z

(2) Y < X < Z

(3) Z < Y < X

(4) X < Z < Y

Sol. 1

18. The one that is not expected to show isomerism is :

- (1) $[Ni(NH_3)_4(H_2O)_2]^{2+}$
- (2) [Ni(en)₃]²⁺
- (3) [Pt(NH₃)₂Cl₂]

(4) $[Ni(NH_3)_2Cl_2]$

Sol. 4

 $[Ni(NH_3)_2Cl_2]Ni^{2+}$ is sp³ hybridised & such tetrahedral complex does not show either of geometrical or optical isomerism

[Ni(en)₂]²⁺ shows only optical isomers while other three shows geometrical isomerism

- **19.** Amongst the following statements regarding adsorption, those that are valid are :
 - (a) ΔH becomes less negative as adsorption proceeds.
 - (b) On a given adsorbent, ammonia is adsorbed more than nitrogen gas.
 - (c) On adsorption, the residual force acting along the surface of the adsorbent increases.
 - (d) With increase in temperature, the equilibrium concentration of adsorbate increases.
 - (1) (b) and (c)

(2) (c) and (d)

(3) (a) and (b)

- (4) (d) and (a)
- **Sol.** Statement 'a' & 'b'
- **20.** The molecular geometry of SF_6 is octahdral. What is the geometry of SF_4 (including lone pair(s) of electrons, if any)?
 - (1) Pyramidal

(2) Trigonal bipyramidal

(3) Tetrahedral

(4) Square planar

- Sol. 2
 - SF₄ is Sp³d hybridised in which hybrid orbitals have TBP arrangement but its shape is sea-saw

- 21. The ratio of the mass percentages of 'C & H' and 'C & O' of a saturated acyclic organic compound 'X' are 4: 1 and 3: 4 respectively. Then, the moles of oxygen gas required for complete combustion of two moles of organic compound 'X' is ______.
- **Sol.** Mass ratio of C : H is $4:1 \Rightarrow 12:3$ & C : O is $3:4 \Rightarrow 12:16$ So,

mass mole moleratio

C 12 1 1 H 3 3 3 O 16 1 1

Empirical formula \Rightarrow CH₃O

as compound is satured a cyclic so, molecular formula is $C_2H_6O_2$.

$$C_2H_6O_2 + \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(g)}$$
_{5 mole}

So, required moles of O_2 is $\Rightarrow 5$

22. For the disproportionation reaction $2Cu^+(aq) \rightleftharpoons Cu(s) + Cu^{2+}(aq)$ at K, In K (where K is the equilibrium constant) is $\underline{\hspace{1cm}} \times 10^{-1}$. Given :

$$(E_{Cu^{2+}/Cu^{+}}^{0} = 0.16 \text{ V}$$
 $E_{Cu^{+}/Cu}^{0} = 0.52 \text{ V}$
 $\frac{RT}{F} = 0.025$)

$$2Cu^{+} \xrightarrow{} Cu(s) + Cu^{+2}$$

$$E^{0} = 0.52 - 0.16$$

$$= 0.36$$

$$E^{0} = \frac{RT}{nF} ln (k_{eq})$$

$$ln(k_{eq}) = \frac{0.36}{0.025} \times \frac{1}{1}$$

$$= \frac{360}{25} = 14.4$$

$$= 144 \times 10^{-1}$$
Ans. 144

- **23.** The work function of sodium metal is $4.41 \times 10^{-19} \text{J}$. If photons of wavelength 300 nm are incident on the metal, the kinetic energy of the ejected electrons will be (h = $6.63 \times 10^{-34} \, \text{J}$ s; c = $3 \times 10^8 \, \text{m/s}$) _____ $\times 10^{-21} \, \text{J}$.
- Sol. 222

$$\phi = 4.41 \times 10^{-19} \,\text{J}$$

 $\lambda = 300 \text{ nm}$

$$KE_{max} = \frac{hc}{\lambda} - \phi$$

$$=\frac{6.63\times10^{-34}\times3\times10^{8}}{300\times10^{-9}}-4.41\times\ 10^{-19}$$

$$= 6.63 \times 10^{-19} - 4.41 \times 10^{-19}$$

$$= 222 \times 10^{-21}$$

Ans. 222

- **24.** The oxidation states of transition metal atoms in $K_2Cr_2O_7$, $KMnO_4$ and K_2FeO_4 , respectively, are x, y and z. The sum of x, y and z is _____.
- Sol. 19

$$K_2C_{r_2}^{+6}O_7$$
 $KMnO_4$ $K_2[FeO_4]$

- **25.** The heat of combustion of ethanol into carbon dioxide and water is -327 kcal at constant pressure. The heat evolved (in cal) at constant volume and 27°C (if all gases behave ideally) is (R = 2 cal mol⁻¹ K⁻¹) ______.
- **Sol.** $\Delta H_c^0 [C_2 H_5 OH] = -327 \text{ kcal}$

$$C_2H_5OH(I) + 3O_2(g) \longrightarrow 2CO_2(g) + 3(H_2O)(I)$$

$$\Delta E_c^0 = \Delta H_c^0 - \Delta ngRT$$

= - 327 × 1000 - (-1) × 2 × 300
= - 327000 + 600
= - 326400