MATHEMATICS
 JEE-MAIN (July-Attempt)
 29 July (Shift-1) Paper Solution

SECTION - A

1. Let R be a relation from the set $\{1,2,3, \ldots, 60\}$ to itself such that $R=\{(a, b): b=p q$, where $p, q \geqslant 3$ are prime numbers $\}$. Then, the number of elements in R is :
(A) 600
(B) 660
(C) 540
(D) 720

Sol. B

Number of possible values of $a=60$, for $b=p q$,
If $p=3, q=3,5,7,11,13,17,19$
If $p=5 q=5,7,11$
If $p=7 q=7$
Total cases $=60 \times 11=660$
2. If $z=2+3 i$, then $z^{5}+(\bar{z})^{5}$ is equal to:
(A) 244
(B) 224
(C) 245
(D) 265

Sol. A
$z^{5}+(\bar{z})^{5}=(2+3 i)^{5}+(2-3 i)^{5}$
$=2\left({ }^{5} C_{0} 2^{5}+{ }^{5} C_{2} 2^{3}(3 i)^{2}+{ }^{5} C_{4} 2^{1}(3 i)^{4}\right)$
$=2(32+10 \times 8(-9)+5 \times 2 \times 81)=244$
3. Let A and B be two 3×3 non-zero real matrices such that $A B$ is a zero matrix. Then
(A) the system of linear equations $A X=0$ has a unique solution
(B) the system of linear equations $\mathrm{AX}=0$ has infinitely many solutions
(C) B is an invertible matrix
(D) $\operatorname{adj}(\mathrm{A})$ is an invertible matrix

Sol. B
$A B=0 \Rightarrow|A B|=0$

$$
|\mathrm{A}||\mathrm{B}|=0
$$

If $|A| \neq 0, B=0$ (not possible)
If $|B| \neq 0, A=0$ (not possible)
Hence $|\mathrm{A}|=|\mathrm{B}|=0$
$\Rightarrow A X=0$ has infinitely many solutions
4. If $\frac{1}{(20-a)(40-a)}+\frac{1}{(40-a)(60-a)}+\cdots+\frac{1}{(180-a)(200-a)}=\frac{1}{256}$, then the maximum value of a is :
(A) 198
(B) 202
(C) 212
(D) 218

Sol. C
By splitting $\frac{1}{20}\left[\left(\frac{1}{20-a}-\frac{1}{40-a}\right)+\left(\frac{1}{40-a}-\frac{1}{60-a}\right)+\ldots+\left(\frac{1}{180-a}-\frac{1}{200-a}\right)\right]=\frac{1}{256}$ $(20-a)(200-a)=256 \times 9$
$\mathrm{a}^{2} \square 220 \mathrm{a}+1696=0$
$a=8,212+$
Hence maximum value of a is 212 .
5. If $\lim _{\mathrm{x} \rightarrow 0} \frac{\alpha \mathrm{e}^{\mathrm{x}}+\beta \mathrm{e}^{-\mathrm{x}}+\gamma \sin \mathrm{x}}{\mathrm{x} \sin ^{2} \mathrm{x}}=\frac{2}{3}$, where $\alpha, \beta, \gamma \in \mathbf{R}$, then which of the following is NOT correct?
(A) $\alpha^{2}+\beta^{2}+\gamma^{2}=6$
(B) $\alpha \beta+\beta \gamma+\gamma \alpha+1=0$
(C) $\alpha \beta^{2}+\beta \gamma^{2}+\gamma \alpha^{2}+3=0$
(D) $\alpha^{2}-\beta^{2}+\gamma^{2}=4$

Sol. C

$\lim _{x \rightarrow 0} \frac{\alpha\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right)+\beta\left(1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots\right)+\gamma\left(x-\frac{x^{3}}{3!}+\ldots\right)}{x^{3}}$
constant terms should be zero
$\Rightarrow \alpha+\beta=0$
coeff of x should be zero
$\Rightarrow \alpha \square \beta+\gamma=0$
coeff of x^{2} should be zero
$\Rightarrow \frac{\alpha}{2}+\frac{\beta}{2}=0$
$\lim _{x \rightarrow 0} \frac{x^{3}\left(\frac{\alpha}{3!}-\frac{\beta}{3!}-\frac{\gamma}{3!}\right)+\mathrm{x}^{4}\left(\frac{\alpha}{3!}-\frac{\beta}{3!}-\frac{\gamma}{3!}\right)}{\mathrm{x}^{3}}=\frac{2}{3}$
$\frac{\alpha}{6}-\frac{\beta}{6}-\frac{\gamma}{6}=2 / 3$
$\Rightarrow \alpha=1, \beta=-1, \gamma=-2$
6. The integral $\int_{0}^{\frac{\pi}{2}} \frac{1}{3+2 \sin x+\cos x} d x$ is equal to:
(A) $\tan ^{-1}(2)$
(B) $\tan ^{-1}(2)-\frac{\pi}{4}$
(C) $\frac{1}{2} \tan ^{-1}(2)-\frac{\pi}{8}$
(D) $\frac{1}{2}$

Sol. B

$I=\int_{0}^{\frac{\pi}{2}} \frac{d x}{3+2 \sin x+\cos x}=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \frac{x}{2} \cdot d x}{2 \tan 2 \frac{x}{2}+4 \tan \frac{x}{2}+4}$
Put $\tan \frac{x}{2}=t$, so
$I=\int_{0}^{1} \frac{d t}{(t+1)^{2}+1}=\left.\tan ^{-1}(x+1)\right|_{0} ^{1}=\tan ^{-1} 2-\frac{\pi}{4}$
7. Let the solution curve $y=y(x)$ of the differential equation $\left(1+e^{2 x}\right)\left(\frac{d y}{d x}+y\right)=1$ pass through the point $\left(0, \frac{\pi}{2}\right)$. Then, $\lim _{x \rightarrow \infty} e^{x} y(x)$ is equal to:
(A) $\frac{\pi}{4}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{\pi}{2}$
(D) $\frac{3 \pi}{2}$

Sol. B

$$
\frac{d y}{d x}+y=\frac{1}{1+e^{2 x}}
$$

So, integrating factor is $e^{\int 1 . d x}=e^{x}$
So, solution is $y . e^{x}=\tan ^{-1}\left(e^{x}\right)+c$
Now as curve is passing through $\left(0, \frac{\pi}{2}\right)$ so
$\Rightarrow c=\frac{\pi}{4}$
$\Rightarrow \lim _{x \rightarrow \infty}\left(y \cdot e^{x}\right)=\lim _{x \rightarrow \infty}\left(\tan ^{-1}\left(e^{x}\right)+\frac{\pi}{4}\right)=\frac{3 \pi}{4}$
8. Let a line L pass through the point of intersection of the lines $b x+10 y-8=0$ and $2 x-3 y=$ $0, \mathrm{~b} \in \mathbf{R}-\left\{\frac{4}{3}\right\}$. If the line L also passes through the point $(1,1)$ and touches the circle $17\left(x^{2}+y^{2}\right)=16$, then the eccentricity of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ is:
(A) $\frac{2}{\sqrt{5}}$
(B) $\sqrt{\frac{3}{5}}$
(C) $\frac{1}{\sqrt{5}}$
(D) $\sqrt{\frac{2}{5}}$

Sol. B

Line is passing through intersection of $\mathrm{bx}+10 \mathrm{y}-8=0$ and $2 \mathrm{x}-3 \mathrm{y}=0$ is
$(b x+10 y-8)+\lambda(2 x-3 y)=0$. As line is
passing through $(1,1)$ so $\lambda=b+2$
Now line $(3 b+4) x-(3 b-4) y-8=0$ is
tangent to circle $17\left(x^{2}+y^{2}\right)=16$
So, $\frac{8}{\sqrt{(3 b+4)^{2}+(3 b-4)^{2}}}=\frac{4}{\sqrt{17}}$
$\Rightarrow b^{2}=2 \Rightarrow e=\sqrt{\frac{3}{5}}$
9. If the foot of the perpendicular from the point $A(-1,4,3)$ on the plane $P: 2 x+m y+n z=4$, is $\left(-2, \frac{7}{2}, \frac{3}{2}\right)$, then the distance of the point A from the plane P, measured parallel to a line with direction ratios $3,-1,-4$, is equal to :
(A) 1
(B) $\sqrt{26}$
(C) $2 \sqrt{2}$
(D) $\sqrt{14}$

Sol. B

Let B be foot of \perp coordinates of $B=\left(-2, \frac{7}{2}, \frac{3}{2}\right)$
Direction ratio of line AB is $<2,1,3>$ so
$\mathrm{m}=1, \mathrm{n}=3$
So equation of AC is $\frac{x+1}{3}=\frac{y-4}{-1}=\frac{z-3}{-4}=\lambda$
So point C is $(3 \lambda-1,-\lambda+4,-4 \lambda+3)$. But C lies on the plane, so
$6 \lambda-2-\lambda+4-12 \lambda+9=4$
$\Rightarrow \lambda=1 \Rightarrow \mathrm{C}(2,3,-1)$
$\Rightarrow A C=\sqrt{26}$
10. Let $\vec{a}=3 \hat{\imath}+\hat{\jmath}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$, Let \vec{c} be a vector satisfying $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}+\lambda \vec{c} \cdot$ If \vec{b} and \vec{c} are non-parallel, then the value of λ is :
(A) -5
(B) 5
(C) 1
(D) -1

Sol. A
$\vec{a}=3 \hat{\imath}+\hat{\jmath}, \vec{b}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$
As $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}+\lambda \vec{c}$
$\Rightarrow \vec{a} . \vec{c}(\vec{b})-(\vec{a} . \vec{b}) \vec{c}=\vec{b}+\lambda \vec{c}$
$\Rightarrow \vec{a} \cdot \vec{c}=1, \vec{a} \cdot \vec{b}=-\lambda$
$\Rightarrow(3 \hat{\imath}+\hat{\jmath}) \cdot(\hat{\imath}+2 \hat{\jmath}+\hat{k})=-\lambda$
$\Rightarrow \lambda=-5$
11. The angle of elevation of the top of a tower from a point A due north of it is α and from a point B at a distance of 9 units due west of A is $\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)$. If the distance of the point B from the tower is 15 units, then $\cot \alpha$ is equal to :
(A) $\frac{6}{5}$
(B) $\frac{9}{5}$
(C) $\frac{4}{3}$
(D) $\frac{7}{3}$

Sol. A

Given $\mathrm{OB}=15$
$\cos \beta=\frac{3}{\sqrt{13}}$

$\tan \beta=\frac{2}{3}$

$\tan \beta=\frac{h}{15}$
$\frac{2}{3}=\frac{h}{15}$
$10=\mathrm{h}$

$\mathrm{OA}^{2}+\mathrm{AB}^{2}=225$
$0 A^{2}+81=225$
$0 \mathrm{O}=12$

$\tan \alpha=\frac{10}{12}$
$\cot \alpha=\frac{12}{10}=\frac{6}{5}$
12. The statement $(p \wedge q) \Rightarrow(p \wedge r)$ is equivalent to :
(A) $q \Rightarrow(p \wedge r)$
(B) $p \Rightarrow(p \wedge r)$
(C) $(\mathrm{p} \wedge \mathrm{r}) \Rightarrow(\mathrm{p} \wedge \mathrm{q})(\mathrm{D})(\mathrm{p} \wedge \mathrm{q}) \Rightarrow \mathrm{r}$

Sol. D
$(\mathrm{p} \wedge \mathrm{q}) \Rightarrow(\mathrm{p} \wedge \mathrm{r})$
$\sim(p \wedge q) \vee(p \wedge r)$
$(\sim p \vee \sim q) \vee(p \wedge r)$
$(\sim p \vee(p \wedge r)) \vee \sim q$
$(\sim p \vee p) \wedge(\sim p \vee r) \vee \sim q$
$(\sim p \vee r) \vee \sim q$
$(\sim p \vee \sim q) \vee r$
$\sim(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{r}$
$(\mathrm{p} \wedge \mathrm{q}) \Rightarrow \mathrm{r}$
13. Let the circumcentre of a triangle with vertices $A(a, 3), B(b, 5)$ and $C(a, b), a b>0$ be $P(1,1)$. If the line AP intersects the line $B C$ at the point $Q\left(k_{1}, k_{2}\right)$, then $k_{1}+k_{2}$ is equal to :
(A) 2
(B) $\frac{4}{7}$
(C) $\frac{2}{7}$
(D) 4

Sol. B

$\mathrm{maC}_{\mathrm{AC}} \longrightarrow \infty$
mPD $=0$
$D\left(\frac{a+a}{2}, \frac{b+3}{2}\right)$
D $\left(\mathrm{a}, \frac{\mathrm{b}+3}{2}\right)$
mpD $=0$
$\frac{\mathrm{b}+3}{2}-1=0$
$b+3-2=0$
$b=-1$
$\mathrm{E}\left(\frac{\mathrm{b}+\mathrm{a}}{2}, \frac{5+\mathrm{b}}{2}\right)=\left(\frac{\mathrm{a}-1}{2}, 2\right)$
$\mathrm{m}_{\mathrm{CB}} . \mathrm{m}_{\mathrm{EP}}=\square 1$
$\left(\frac{5-\mathrm{b}}{\mathrm{b}-\mathrm{a}}\right) \cdot\left(\frac{2-1}{\frac{\mathrm{a}-1}{2}-1}\right)=-1$
$\left(\frac{6}{-1-a}\right) \cdot\left(\frac{2}{a-3}\right)=-1$
$12=(1+a)(a-3)$
$12=a^{2}-3 a+a-3$
$\Rightarrow \mathrm{a}^{2}-2 \mathrm{a}-15=0$
$(a-5)(a+3)=0$
$\mathrm{a}=5$ or $\mathrm{a}=-3$
Given $\mathrm{ab}>0$
$a(-1)>0$
$-\mathrm{a}>0$
$\mathrm{a}<0$
$a=-3$ Accept
AP line $A(-3,3) P(1,1)$
$y-1=\left(\frac{3-1}{-3-1}\right)(x-1)$
$-2 y+2=x-1$
$\Rightarrow X+2 y=3$ Appling(1)
Line BC B($-1,5$)
$C(-3,-1)$
$(y-5)=\frac{6}{2}(x+1)$
$y-5=3 x+3$
$y=3 x+8$
Solving (1) \& (2)
$\mathrm{x}+2(3 \mathrm{x}+8)=3$
$\Rightarrow 7 \mathrm{x}+16=3$
$7 \mathrm{x}=-13$
$x=-\frac{13}{7}$
$y=3\left(-\frac{13}{7}\right)+8$
$=\frac{-39+56}{7}$
$y=\frac{17}{7}$
$x+y=\frac{-13+17}{7}=\frac{4}{7}$
14. Let \hat{a} and \hat{b} be two unit vectors such that the angle between them is $\frac{\pi}{4}$. If θ is the angle between the vectors $(\hat{a}+\hat{b})$ and $\left(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b})\right.$), then the value of $164 \cos ^{2} \theta$ is equal to:
(A) $90+27 \sqrt{2}$
(B) $45+18 \sqrt{2}$
(C) $90+3 \sqrt{2}$
(D) $54+90 \sqrt{2}$

Sol. A
$\hat{a} \wedge \hat{b}=\frac{\pi}{4}=\phi$
a. $\hat{\mathrm{b}}=|\hat{a}||\hat{\mathrm{b}}| \cos \phi$
â. $\hat{b}=\cos \phi=\frac{1}{\sqrt{2}}$
$\cos \theta=\frac{(\hat{a}+\widehat{\mathrm{b}}) \cdot(\hat{\mathrm{a}}+2 \widehat{\mathrm{~b}}+2(\hat{a} \times \widehat{\mathrm{b}}))}{|\hat{\mathrm{a}}+\widehat{\mathrm{b}}|(\hat{\mathrm{a}}+2 \widehat{\mathrm{~b}}+2(\hat{\mathrm{a}} \times \widehat{\mathrm{b}}) \mid}$
$|\hat{a}+\hat{b}|^{2}=(\hat{a}+\hat{b}) \cdot(\hat{a}+\hat{b})$
$|\hat{a}+\hat{b}|^{2}=2+2 \hat{a} . \hat{b}$
$=2+\sqrt{2}$
$\hat{\mathrm{a}} \times \hat{\mathrm{b}}=\frac{\widehat{\mathrm{n}}}{\sqrt{2}}$
When \hat{n} is vector $\perp \hat{a}$ and \hat{b}
let $\vec{c}=\hat{a} \times \hat{b}$
We know
$\vec{c} \cdot \vec{a}=0$
$\vec{c} \cdot \vec{b}=0$
$|\hat{a}+2 \hat{b}+2 \vec{c}|^{2}$
$=1+4+\frac{(4)}{2}+4 \hat{a} \cdot \hat{b}+8 \hat{b} \cdot \vec{c}+4 \vec{c} \cdot \hat{a}$
$=7+\frac{4}{\sqrt{2}}=7+2 \sqrt{2}$
Now
$(\hat{a}+\hat{b}) \cdot(\hat{a}+2 \hat{b}+2 \vec{c})$
$=|\hat{a}|^{2}+2 \hat{a} \cdot \hat{b}+0+\hat{b} \cdot \hat{a}+2|\hat{b}|^{2}+0$
$=1+\frac{2}{\sqrt{2}}+\frac{1}{\sqrt{2}}+2$
$=3+\frac{3}{\sqrt{2}}$
$\cos \theta=\frac{3+\frac{3}{\sqrt{2}}}{\sqrt{2+\sqrt{2}} \sqrt{7+2 \sqrt{2}}}$
$\cos ^{2} \theta=\frac{9(\sqrt{2}+1)^{2}}{2(2+\sqrt{2})(7+2 \sqrt{2})}$
$\cos ^{2} \theta=\left(\frac{9}{2 \sqrt{2}}\right) \frac{(\sqrt{2}+1)}{(7+2 \sqrt{2})}$
$164 \cos ^{2} \theta=\frac{(82)(9)(\sqrt{2}+1)(7-2 \sqrt{2})}{\sqrt{2}(7+2 \sqrt{2})(7-2 \sqrt{2})}$
$=\frac{(82)}{\sqrt{2}} \frac{(9)[7 \sqrt{2}-4+7-2 \sqrt{2}]}{(41)}$
$=(9 \sqrt{2})[5 \sqrt{2}+3]$
$=90+27 \sqrt{2}$
15. If $\mathrm{f}(\alpha)=\int_{1}^{\alpha} \frac{\log _{10} \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}, \alpha>0$, then $\mathrm{f}\left(\mathrm{e}^{3}\right)+\mathrm{f}\left(\mathrm{e}^{-3}\right)$ is equal to:
(A) 9
(B) $\frac{9}{2}$
(C) $\frac{9}{\log _{e}(10)}$
(D) $\frac{9}{2 \log _{e}(10)}$

Sol. D
$\mathrm{f}\left(\mathrm{e}^{3}\right)=\int_{\mathrm{I}}^{\mathrm{e}^{3}} \frac{\ell \mathrm{nt}}{\ln 10(1+\mathrm{t})} \mathrm{dt} \ldots$ (1)
$\mathrm{f}(\alpha)=\int_{\mathrm{I}}^{\alpha} \frac{\ell \mathrm{nt}}{(\ell \mathrm{n} 10)(1+\mathrm{t})} \mathrm{dt}$
$\mathrm{t}=\frac{1}{\mathrm{x}} \Rightarrow \mathrm{x}=\frac{1}{\mathrm{t}}$
$\mathrm{dt}=\frac{-1}{\mathrm{x}^{2}} \mathrm{dx}$
$=\int_{1}^{\frac{1}{\alpha}} \frac{-\ln x}{(\ln 10)\left(1+\frac{1}{x}\right)}\left(-\frac{1}{x^{2}}\right) d x$
$\mathrm{f}(\alpha)=\frac{1}{\ln 10} \int_{1}^{\frac{1}{\alpha}} \frac{\ln x}{\mathrm{x}(\mathrm{x}+1)} \mathrm{dx}$
$\mathrm{f}\left(\mathrm{e}^{-3}\right)=\frac{1}{\ln 10} \int_{1}^{\mathrm{e}^{3}} \frac{\ell \mathrm{nt}}{\mathrm{t}(\mathrm{t}+1)} \mathrm{dt} \ldots$.
Add (1) \& (2)
$\mathrm{f}\left(\mathrm{e}^{3}\right)+\mathrm{f}\left(\mathrm{e}^{-3}\right)$
$=\left(\frac{1}{\ln 10}\right) \int_{1}^{\mathrm{e}^{3}} \frac{\ell \mathrm{nt}}{(1+\mathrm{t})}\left[1+\frac{1}{\mathrm{t}}\right] \mathrm{dt}$
$=\left(\frac{1}{\ell n 10}\right) \int_{1}^{3} \frac{\ell \mathrm{nt}}{\mathrm{t}} \mathrm{dt}$
ℓ nt $=\mathrm{r}$
$\frac{\mathrm{dt}}{\mathrm{t}}=\mathrm{dr}$
$=\frac{1}{\ln 10} \int_{0}^{3} \mathrm{rdr}$
$=\left.\left(\frac{1}{\ln 10}\right)\left(\frac{\mathrm{r}^{2}}{2}\right)\right|_{0} ^{3}$
$=\left(\frac{1}{\log 10}\right)\left(\frac{9}{2}\right)$
$=\frac{9}{2 \log _{\mathrm{e}} 10}$
16. The areas of the region $\left\{(x, y):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$ is equal to :
(A) $\frac{5}{2} \sin ^{-1}\left(\frac{3}{5}\right)-\frac{1}{2}$
(B) $\frac{5 \pi}{4}-\frac{3}{2}$
(C) $\frac{3 \pi}{4}+\frac{3}{2}$
(D) $\frac{5 \pi}{4}-\frac{1}{2}$

Sol. D

$|x-1|<y<\sqrt{5-x^{2}}$
When $|x-1|=\sqrt{5-x^{2}}$
$\Rightarrow(\mathrm{x}-1)^{2}=5-\mathrm{x}^{2}$
$\Rightarrow x^{2}-\mathrm{x}-2=0$
$\Rightarrow x=2,-1$
Required Area $=$ Area of $\triangle \mathrm{ABC}+$ Area of region BCD
$=\frac{1}{2}\left|\begin{array}{ccc}1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & 1\end{array}\right|+\frac{\pi}{4}(\sqrt{5})^{2}-\frac{1}{2}(\sqrt{5})^{2}$
$=\frac{5 \pi}{4}-\frac{1}{2}$
17. Let the focal chord of the parabola P: $y^{2}=4 x$ along the line $L: y=m x+c, m>0$ meet the parabola at the points M and N. Let the line L be a tangent to the hyperbola $H: x^{2}-y^{2}=4$. If 0 is the vertex of P and F is the focus of H on the positive x -axis, then the area of the quadrilateral OMFN is :
(A) $2 \sqrt{6}$
(B) $2 \sqrt{14}$
(c) $4 \sqrt{6}$
(D) $4 \sqrt{14}$

Sol. B

$H: \frac{x^{2}}{4}-\frac{y^{2}}{4}=1$
Focus (ae, 0)
$F(2 \sqrt{2}, 0)$
Line $L: y=m x+c$ pass $(1,0)$
$0=m+c$
Line L is tangent to Hyperbola. $\frac{x^{2}}{4}-\frac{y^{2}}{4}=1$
$\mathrm{c}= \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}$
$c= \pm \sqrt{4 m^{2}-4}$
From (1)
$-m= \pm \sqrt{4 m^{2}-4}$
Squaring
$m^{2}=4 m^{2}-4$
$4=3 m^{2}$
$\frac{2}{\sqrt{3}}=\mathrm{m}($ as $\mathrm{m}>0)$
$\mathrm{c}=-\mathrm{m}$
$c=\frac{-2}{\sqrt{3}}$
$y=\frac{2 x}{\sqrt{3}}-\frac{2}{\sqrt{3}}$
$\mathrm{y}^{2}=4 \mathrm{x}$
$\Rightarrow\left(\frac{2 \mathrm{x}-2}{\sqrt{3}}\right)^{2}=4 \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+1-2 \mathrm{x}=3 \mathrm{x}$
$\Rightarrow x^{2}-5 x+1=0$
$y^{2}=4\left(\frac{\sqrt{3} y+2}{2}\right)$
$y^{2}=2 \sqrt{3} y+4$
$\Rightarrow y^{2}-2 \sqrt{3} y-4=0$
Area
$\left.\left|\frac{1}{2}\right| \begin{array}{ccccc}0 & x_{1} & 2 \sqrt{2} & x_{2} & 0 \\ 0 & y_{1} & 0 & y_{2} & 0\end{array} \right\rvert\,$
$=\left|\frac{1}{2}\left[-2 \sqrt{2} y_{1}+2 \sqrt{2} y_{2}\right]\right|$
$=\sqrt{2}\left|y_{2}-y_{1}\right|=(\sqrt{2}) \sqrt{12+16}$
$=\sqrt{56}$
$=2 \sqrt{14}$
18. The number of points, where the function $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-$ 3) $\left|x^{2}-5 x+4\right|$, is NOT differentiable, is :
(A) 1
(B) 2
(C) 3
(D) 4

Sol. B

$\mathrm{f}(\mathrm{x})=|\mathrm{x}-1| \cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)\left|\mathrm{x}^{2}-5 \mathrm{x}+4\right|$
$=|\mathrm{x}-1| \cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-1||\mathrm{x}-4|$
$=|x-1|[\cos |x-2| \sin |x-1|+(x-3)|x-4|]$
Non differentiable at $\mathrm{x}=1$ and $\mathrm{x}=4$.
19. Let $S=\{1,2,3, \ldots, 2022\}$. Then the probability, that a randomly chosen number n from the set S such that $\operatorname{HCF}(\mathrm{n}, 2022)=1$, is :
(A) $\frac{128}{1011}$
(B) $\frac{166}{1011}$
(C) $\frac{127}{337}$
(D) $\frac{112}{337}$

Sol. D

Total number of elements $=2022$
$2022=2 \times 3 \times 337$
$\operatorname{HCF}(n, 2022)=1$
is feasible when the value of ' n ' and 2022 has no common factor.
$\mathrm{A}=$ Number which are divisible by 2 from
\{1,2,3.....2022\}
$\mathrm{n}(\mathrm{A})=1011$
B = Number which are divisible by 3
from \{1,2,3...... 2022$\}$
$n(B)=674$
$\mathrm{A} \cap \mathrm{B}=$ Number which are divisible by 6
from \{1,2,3........ 2022$\}$
6,12,18........., 2022
$337=n(A \cap B)$
$\mathrm{n}(\mathrm{A} \cup \mathrm{B})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
$=1011+674-337$
$=1348$
C= Number which divisible by 337 from
\{1,.......1022\}
$C=\{337,674,1011,1348,1685,2022\}$

Already counted in
Set $(A \cup B)$

Already counted in counted in $\operatorname{Set}(A \cup B) \quad \operatorname{Set}(A \cup B)$

Total elements which are divisible by 2 or 3 or $337=1348+2=1350$
Favourable cases $=$ Element which are neither divisible by 2, 3 or 337
= 2022-1350
$=672$
Required probability $=\frac{672}{2022}=\frac{112}{337}$
20. Let $f(x)=3^{\left(x^{2}-2\right)^{3}+4}, x \in$ R. Then which of the following statements are true ?
$P: x=0$ is a point of local minima of f
$\mathrm{Q}: \mathrm{x}=\sqrt{2}$ is a point of inflection of f
R : f^{\prime} is increasing for $x>\sqrt{2}$
(A) Only P and Q
(B) Only P and R
(C) Only Q and R
(D) All P, Q and R

Sol. D
$f(x)=81.3^{\left(x^{2}-2\right)^{3}}$
$f^{\prime}(x)=81 \cdot 3^{\left(x^{2}-2\right)^{3}} \cdot \ln 3 \cdot 3\left(x^{2}-2\right)^{2} \cdot 2 x$
$=(81 \times 6) 3^{\left(x^{2}-2\right)^{3}} x\left(x^{2}-2\right)^{2} \ln 3$

$x=6$ is point of local min
$f^{\prime}(x)=\underbrace{(486 . \ell n 3)}_{k} \underbrace{3^{\left(x^{2}-2\right)^{3}} x\left(x^{2}-2\right)^{2}}_{g(x)}$
$g^{\prime}(x)=3^{\left(x^{2}-2\right)^{3}}\left(x^{2}-2\right)^{2}+x \cdot 3^{\left(x^{2}-2\right)^{3}} \cdot 4 x \cdot\left(x^{2}-2\right)$
$+\mathrm{x} \cdot\left(\mathrm{x}^{2}-2\right)^{2} \cdot 3^{\left(\mathrm{x}^{2}-2\right)^{3}} \ln 3.3\left(\mathrm{x}^{2}-2\right)^{2} \cdot 2 \mathrm{x}$
$=3^{\left(x^{2}-2\right)^{3}}\left(x^{2}-2\right)\left[x^{2}-2+4 x^{2}+6 x^{2} \ln 3\left(x^{2}-2\right)^{3}\right]$
$g^{\prime}(x)=3^{\left(x^{2}-2\right)^{3}}\left(x^{2}-2\right)\left[5 x^{2}-2+6 x^{2} \ln 3\left(x^{2}-2\right)^{3}\right]$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{k}, \mathrm{g}^{\prime}(\mathrm{x})$
$\mathrm{f}^{\prime \prime}(\sqrt{2})=0, \mathrm{f}^{\prime \prime}\left(\sqrt{2}^{+}\right)>0, \mathrm{f}^{\prime}\left(\sqrt{2}^{-}\right)<0$
$x=\sqrt{2}$ is point of inflection
$\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ for $\mathrm{x}>\sqrt{2}$ so $\mathrm{f}^{\prime}(\mathrm{x})$ is increasing

SECTION - B

21. Let $S=\left\{\theta \in(0,2 \pi): 7 \cos ^{2} \theta-3 \sin ^{2} \theta-2 \cos ^{2} 2 \theta=2\right\}$. Then, the sum of roots of all the equations $x^{2}-2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) x+6 \sin ^{2} \theta=0, \theta \in S$, is \qquad .

Sol. 16

$7 \cos ^{2} \theta-3 \sin ^{2} \theta-2 \cos ^{2} 2 \theta=2$
$4 \cos ^{2} \theta+3 \cos 2 \theta-2 \cos ^{2} 2 \theta=2$
$2(1+\cos 2 \theta)+3 \cos 2 \theta-2 \cos ^{2} 2 \theta=2$
$2 \cos ^{2} 2 \theta-5 \cos 2 \theta=0$
$\cos 2 \theta(2 \cos 2 \theta-5)=0$
$\cos 2 \theta=0$
$\theta=(2 n+1) \frac{\pi}{4}$
$S=\left\{\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right\}$
For all four values of θ
$\mathrm{x}^{2}-2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) \mathrm{x}+6 \sin ^{2} \theta=0$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+3=0$
Sum of roots of all four equations $=4 \times 4=16$.
22. Let the mean and the variance of 20 observations $x_{1}, x_{2}, \ldots, x_{20}$ be 15 and 9 , respectively. For $\alpha \in \mathbf{R}$, if the mean of $\left(x_{1}+\alpha\right)^{2},\left(x_{2}+\alpha\right)^{2} \ldots, \ldots\left(x_{20}+\alpha\right)^{2}$ is 178 , then the square of the maximum value of α is equal to \qquad .

Sol. 4

$\sum \mathrm{x}_{1}=15 \times 20=300$
$\frac{\sum \mathrm{x}_{1}^{2}}{20}-(15)^{2}=9$
$\sum \mathrm{x}_{1}^{2}=234 \times 20=4680$
$\frac{\sum\left(\mathrm{x}_{1}+\alpha\right)^{2}}{20}=178 \Rightarrow \sum\left(\mathrm{x}_{1}+\alpha\right)^{2}=3560$
$\Rightarrow \sum \mathrm{x}_{1}^{2}+2 \alpha \sum \mathrm{x}_{1}+\sum \alpha^{2}=3560$
$4680+600 \alpha+20 \alpha^{2}=3560$
$\Rightarrow \alpha^{2}+30 \alpha+56=0$
$\Rightarrow(\alpha+28)(\alpha+2)=0$
$a=-2,-28$
Square of maximum value of α is 4
23. Let a line with direction ratios $\mathrm{a}-4 \mathrm{a},-7$ be perpendicular to the lines with direction ratios $3,-1,2 b$ and $b, a,-2$. If the point of intersection of the line $\frac{x+1}{a^{2}+b^{2}}=\frac{y-2}{a^{2}-b^{2}}=\frac{z}{1}$ and the plane $x-$ $y+z=0$ is (α, β, γ), then $\alpha+\beta+\gamma$ is equal to \qquad _.
Sol. 10
($\mathrm{a},-4 \mathrm{a},-7$) \perp to $(3,-1,2 \mathrm{~b})$
$\mathrm{a}=2 \mathrm{~b}$
($\mathrm{a},-4 \mathrm{a},-7$) \perp to $(\mathrm{b}, \mathrm{a},-2)$
$3 a+4 a-14 b=0$
$a b-4 a^{2}+14=0$
From Equations (i) and (ii)
$2 b^{2}-16 b^{2}+14=0$
$\mathrm{b}^{2}=1$
$\mathrm{a}^{2}=4 \mathrm{~b}^{2}=4$
$\frac{\mathrm{x}+1}{5}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}}{1}=\mathrm{k}$
$\alpha=5 \mathrm{k}-1, \beta=3 \mathrm{k}+2, \gamma=\mathrm{k}$
As (α, β, γ) satisfies $x-y+z=0$
$5 \mathrm{k}-1-(3 \mathrm{k}+2)+\mathrm{k}=0$
$\mathrm{k}=1$
$\therefore \alpha+\beta+\gamma=9 \mathrm{k}+1=10$
24. Let $a_{1}, a_{2}, a_{3}, \ldots$ be an A.P. If $\sum_{r=1}^{\infty} \frac{a_{r}}{2^{r}}=4$, then $4 a_{2}$ is equal to \qquad
Sol. 16
$\mathrm{s}=\frac{\mathrm{a}_{1}}{2}+\frac{\mathrm{a}_{2}}{2^{2}}+\frac{\mathrm{a}_{3}}{2^{3}}+\ldots$
$\frac{S}{2}=\frac{a_{1}}{2^{2}}+\frac{a_{2}}{2^{3}}+\ldots$
$\overline{\frac{S}{2}}=\frac{a_{1}}{2}+d\left(\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots\right)$
$\frac{S}{2}=\frac{a_{1}}{2}+d\left(\frac{\frac{1}{4}}{1-\frac{1}{2}}\right)$
$\therefore \mathrm{S}=\mathrm{a}_{1}+\mathrm{d}=\mathrm{a}_{2}=4$
Or $4 \mathrm{a}_{2}=16$
25. Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$, in the increasing powers of $\frac{1}{\sqrt[4]{3}}$ be $\sqrt[4]{6}$: 1 . If the sixth term from the beginning is $\frac{\alpha}{\sqrt[4]{3}}$, then α is equal to \qquad -.
Sol. 84
$\frac{T_{5}}{T_{n-3}}=\frac{{ }^{n} C_{4}\left(2^{1 / 4}\right)^{n-4}\left(3^{-1 / 4}\right)^{4}}{{ }^{{ }^{C}} C_{n-4}\left(2^{1 / 4}\right)^{4}\left(3^{-1 / 4}\right)^{n-4}}=\frac{\sqrt[4]{6}}{1}$
$\Rightarrow 2^{\frac{\mathrm{n}-8}{4}} 3^{\frac{\mathrm{n}-8}{4}}=6^{1 / 4}$
$\Rightarrow 6^{\mathrm{n}-8}=6$
$\Rightarrow \mathrm{n}-8=1 \Rightarrow \mathrm{n}=9$
$T_{6}={ }^{9} C_{5}\left(2^{1 / 4}\right)^{4}\left(3^{-1 / 4}\right)^{5}=\frac{84}{\sqrt[4]{3}}$
$\therefore \alpha=84$
26. The number of matrices of order 3×3, whose entries are either 0 or 1 and the sum of all the entries is a prime number, is \qquad _.

Sol. 282

$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] ; a_{i j} \in\{0,1\}$
$\sum \mathrm{a}_{\mathrm{ij}}=2,3,5,7$
Total matrix $={ }^{9} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{3}+{ }^{9} \mathrm{C}_{5}+{ }^{9} \mathrm{C}_{7}$
$=282$
27. Let p and $\mathrm{p}+2$ be prime numbers and let

$$
\Delta=\left|\begin{array}{ccc}
p! & (p+1)! & (p+2)! \\
(p+1)! & (p+2)! & (p+3)! \\
(p+2)! & (p+3)! & (p+4)!
\end{array}\right|
$$

Then the sum of the maximum values of α and β, such that p^{α} and $(p+2)^{\beta}$ divide Δ, is \qquad .

Sol. 4
$\Delta=\left|\begin{array}{ccc}P! & (P+1)! & (P+2)! \\ (P+1)! & (P+2)! & (P+3)! \\ (P+2)! & (P+3)! & (P+4)!\end{array}\right|$
$\Delta=P!(\mathrm{P}+1)!(\mathrm{P}+2)!\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathrm{P}+1 & \mathrm{P}+2 & \mathrm{P}+3 \\ (\mathrm{P}+2)(\mathrm{P}+1) & (\mathrm{P}+3)(\mathrm{P}+2) & (\mathrm{P}+4)(\mathrm{P}+3)\end{array}\right|$
$\Delta=2 \mathrm{P}!(\mathrm{P}+1)!(\mathrm{P}+2)!$
Which is divisible by $\mathrm{P}^{\alpha} \&(\mathrm{P}+2)^{\beta}$
$\therefore \alpha=3, \beta=1$
28. If $\frac{1}{2 \times 3 \times 4}+\frac{1}{3 \times 4 \times 5}+\frac{1}{4 \times 5 \times 6}+\cdots+\frac{1}{100 \times 101 \times 102}=\frac{\mathrm{k}}{101}$, then 34 k is equal to \qquad -
Sol. 286
$\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots .+\frac{1}{100.101 .102}=\frac{\mathrm{k}}{101}$
$\frac{4-2}{2.3 .4}+\frac{5-3}{3.4 .5}+\ldots .+\frac{102-100}{100.101 .102}=\frac{2 \mathrm{k}}{101}$
$\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots+\frac{1}{100.101}-\frac{1}{101.102}=\frac{2 \mathrm{k}}{101}$
$\frac{1}{2.3}-\frac{1}{101.102}=\frac{2 \mathrm{k}}{101}$
$\therefore 2 \mathrm{k}=\frac{101}{6}-\frac{1}{102}$
$\therefore 34 \mathrm{k}=286$
29. Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If $A=\left\{a_{1}+a_{2}+\cdots+a_{k}: k \in N, a_{1}, a_{2}, a_{3}, \ldots, a_{k} \in S\right\}$, then the sum of all the elements in the set $\mathrm{T}-\mathrm{A}$ is equal to
Sol. 11
$S=\{4,6,9\} T=\{9,10,11 \ldots .1000\}$
$A\left\{a_{1}+a_{2}+\ldots . . .+a_{k}: K \in N\right\} \& a_{i} \in S$
Here by the definition of set 'A'
$A=\{a: a=4 x+6 y+9 z\}$
Except the element 11, every element of set T is of
of the form $4 x+6 y+9 z$ for some $x, y, z \in W$
$\therefore \mathrm{T}-\mathrm{A}=\{11\}$
30. Let the mirror image of a circle $c_{1}: x^{2}+y^{2}-2 x-6 y+\alpha=0$ in line $y=x+1$ be $c_{2}: 5 x^{2}+$ $5 y^{2}+10 g x+10 f y+38=0$. If r is the radius of circle c_{2}, then $\alpha+6 r^{2}$ is equal to \qquad .

Sol. 12
Image of centre $c_{1} \equiv(1,3)$ in $x-y+1=0$ is given by
$\frac{x_{1}-1}{1}=\frac{y_{1}-3}{-1}=\frac{-2(1-3+1)}{1^{2}+1^{2}}$
$\Rightarrow \mathrm{x}_{1}=2, \mathrm{y}_{1}=2$
\therefore Centre of circle $\mathrm{c}_{2} \equiv(2,2)$
\therefore Equation of c_{2} be $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-4 \mathrm{y}+\frac{38}{5}=0$

Now radius of c_{2} is $\sqrt{4+4-\frac{38}{5}}=\sqrt{\frac{2}{5}}=\mathrm{r}$
$\left(\text { radius of } \mathrm{c}_{1}\right)^{2}=\left(\text { radius of } \mathrm{c}_{2}\right)^{2}$
$\Rightarrow 10-\alpha=\frac{2}{5} \Rightarrow \alpha=\frac{48}{5}$
$\therefore \alpha+6 r^{2}=\frac{48}{5}+\frac{12}{5}=12$

