MATHEMATICS JEE-MAIN (July-Attempt) 29 July (Shift-1) Paper Solution

SECTION - A

	SECTION - A
1.	Let R be a relation from the set $\{1,2,3,, 60\}$ to itself such that $R = \{(a, b): b = pq, where p, q \ge 3 are prime numbers\}$. Then, the number of elements in R is :
Sol.	(A) 600 (B) 660 (C) 540 (D) 720 B
501.	Number of possible values of a = 60, for b = pq, If p = 3, q = 3, 5, 7, 11, 13, 17, 19 If p = 5 q = 5, 7, 11 If p = 7 q = 7 Total cases = $60 \times 11 = 660$
2.	If $z = 2 + 3i$, then $z^5 + (\bar{z})^5$ is equal to:
Sol.	(A) 244 (B) 224 (C) 245 (D) 265 A
	$z^{5} + (\bar{z})^{5} = (2+3i)^{5} + (2-3i)^{5}$ = 2(⁵ C ₀ 2 ⁵ + ⁵ C ₂ 2 ³ (3i) ² + ⁵ C ₄ 2 ¹ (3i) ⁴) = 2 (32 + 10 × 8(-9) + 5 × 2 × 81) = 244
3.	Let A and B be two 3×3 non-zero real matrices such that AB is a zero matrix. Then
	 (A) the system of linear equations AX = 0 has a unique solution (B) the system of linear equations AX = 0 has infinitely many solutions
	(C) B is an invertible matrix
Sol.	(D) adj(A) is an invertible matrix B
	$AB = 0 \Rightarrow AB = 0$ $ A B = 0$
	$ \mathbf{A} = 0 \qquad \mathbf{B} = 0$
	If $ A \neq 0$, B = 0 (not possible) If $ B \neq 0$, A = 0 (not possible)
	Hence $ A = B = 0$
	\Rightarrow AX = 0 has infinitely many solutions
4.	If $\frac{1}{(20-a)(40-a)} + \frac{1}{(40-a)(60-a)} + \dots + \frac{1}{(180-a)(200-a)} = \frac{1}{256}$, then the maximum value of a is : (A) 108 (P) 202 (C) 212 (D) 219
Sol.	(A) 198 (B) 202 (C) 212 (D) 218 C
	By splitting $\frac{1}{20} \left[\left(\frac{1}{20-a} - \frac{1}{40-a} \right) + \left(\frac{1}{40-a} - \frac{1}{60-a} \right) + \dots + \left(\frac{1}{180-a} - \frac{1}{200-a} \right) \right] = \frac{1}{256}$ (20-a)(200-a) = 256 × 9
	$a^2 \square 220a + 1696 = 0$ a = 8,212+
	Hence maximum value of a is 212.

5. If
$$\lim_{x\to 0} \frac{ae^x + \beta e^{-x} + y\sin x}{x\sin^2 x} = \frac{2}{3'}$$
, where $\alpha, \beta, \gamma \in \mathbf{R}$, then which of the following is **NOT** correct?
(A) $\alpha^2 + \beta^2 + \gamma^2 = 6$ (B) $\alpha\beta + \beta\gamma + \gamma\alpha + 1 = 0$
(C) $\alpha\beta^2 + \beta\gamma^2 + \gamma\alpha^2 + 3 = 0$ (D) $\alpha^2 - \beta^2 + \gamma^2 = 4$
Sol. C

$$\lim_{x\to 0} \frac{\alpha\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...\right) + \beta\left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + ...\right) + \gamma\left(x - \frac{x^3}{3!} + ...\right)}{x^3}$$
constant terms should be zero
 $\Rightarrow \alpha + \beta = 0$
coeff of x should be zero
 $\Rightarrow \alpha = \beta + \gamma = 0$
coeff of x^2 should be zero
 $\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} = 0$
 $\lim_{x\to 0} \frac{x^3\left(\frac{\alpha}{3!} - \frac{\beta}{3!} - \frac{\gamma}{3!}\right) + x^4\left(\frac{\alpha}{3!} - \frac{\beta}{3!} - \frac{\gamma}{3!}\right)}{x^3} = \frac{2}{3}$
 $\frac{\alpha}{6} - \frac{\beta}{6} - \frac{\gamma}{6} = 2/3$
 $\Rightarrow \alpha = 1, \beta = -1, \gamma = +2$
6. The integral $\int_0^{\frac{\pi}{2}} \frac{1}{3! + 2\sin x + \cos x} dx$ is equal to:
(A) $\tan^{-1}(2)$ (B) $\tan^{-1}(2) - \frac{\pi}{4}$ (C) $\frac{1}{2}\tan^{-1}(2) - \frac{\pi}{8}$ (D) $\frac{1}{2}$
Sol. B
 $I = \int_0^{\frac{\pi}{2}} \frac{dx}{3+2\sin x + \cos x} = \int_0^{\frac{\pi}{2}} \frac{\sec^2 \frac{x}{2} dx}{2\tan^2 \frac{x}{2} + \tan^2 \frac{x}{4}}$
Put $\tan \frac{x}{2} = t$, so
 $I = \int_0^1 \frac{dt}{(t+1)^2 + 1} = \tan^{-1}(x+1) |_0^1 = \tan^{-1}2 - \frac{\pi}{4}$
7. Let the solution curve $y = y(x)$ of the differential equation $(1 + e^{2x}) \left(\frac{dy}{4} + y\right) = 1$ pass through

- 7. Let the solution curve y = y(x) of the differential equation $(1 + e^{2x})(\frac{dy}{dx} + y) = 1$ pass through the point $(0, \frac{\pi}{2})$. Then, $\lim_{x\to\infty} e^x y(x)$ is equal to: (A) $\frac{\pi}{4}$ (B) $\frac{3\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{2}$
- (A) $\frac{\pi}{4}$ (B) $\frac{3\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{2}$ Sol. B $\frac{dy}{dx} + y = \frac{1}{1+e^{2x}}$ So, integrating factor is $e^{\int 1.dx} = e^x$ So, solution is $y.e^x = \tan^{-1}(e^x) + c$
 - So, solution is $y \cdot e^x = \tan^{-1}(e^x) + c$ Now as curve is passing through $\left(0, \frac{\pi}{2}\right)$ so

$$\Rightarrow c = \frac{\pi}{4}$$
$$\Rightarrow \lim_{x \to \infty} (y. e^x) = \lim_{x \to \infty} \left(\tan^{-1}(e^x) + \frac{\pi}{4} \right) = \frac{3\pi}{4}$$

8. Let a line L pass through the point of intersection of the lines bx + 10y - 8 = 0 and 2x - 3y = 0, $b \in \mathbf{R} - \left\{\frac{4}{3}\right\}$. If the line L also passes through the point (1,1) and touches the circle $17(x^2 + y^2) = 16$, then the eccentricity of the ellipse $\frac{x^2}{5} + \frac{y^2}{b^2} = 1$ is:

(A)
$$\frac{2}{\sqrt{5}}$$
 (B) $\sqrt{\frac{3}{5}}$ (C) $\frac{1}{\sqrt{5}}$ (D) $\sqrt{\frac{2}{5}}$

Sol. B

Line is passing through intersection of bx +10 y - 8 = 0 and 2x - 3y = 0 is (bx +10y - 8) + λ (2x -3y) = 0. As line is passing through (1,1) so λ = b + 2 Now line (3b + 4) x - (3b - 4) y - 8 = 0 is tangent to circle 17(x² + y²) = 16 So, $\frac{8}{\sqrt{(3b+4)^2+(3b-4)^2}} = \frac{4}{\sqrt{17}}$ $\Rightarrow b^2 = 2 \Rightarrow e = \sqrt{\frac{3}{5}}$

9. If the foot of the perpendicular from the point A(-1,4,3) on the plane P : 2x + my + nz = 4, is $\left(-2, \frac{7}{2}, \frac{3}{2}\right)$, then the distance of the point A from the plane P, measured parallel to a line with direction ratios 3, -1, -4, is equal to : (A) 1 (B) $\sqrt{26}$ (C) $2\sqrt{2}$ (D) $\sqrt{14}$

Sol. B

Let B be foot of \perp coordinates of $B = \left(-2, \frac{7}{2}, \frac{3}{2}\right)$ Direction ratio of line AB is <2,1,3> so m = 1, n = 3 So equation of AC is $\frac{x+1}{3} = \frac{y-4}{-1} = \frac{z-3}{-4} = \lambda$ So point C is $(3\lambda - 1, -\lambda + 4, -4\lambda + 3)$. But C lies on the plane, so $6\lambda - 2 - \lambda + 4 - 12\lambda + 9 = 4$ $\Rightarrow \lambda = 1 \Rightarrow C(2,3,-1)$ $\Rightarrow AC = \sqrt{26}$ **10.** Let $\vec{a} = 3\hat{i} + \hat{j}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$, Let \vec{c} be a vector satisfying $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} + \lambda \vec{c} \cdot \text{If } \vec{b}$ and \vec{c} are non-parallel, then the value of λ is :

(A) -5 (B) 5 (C) 1 (D) -1 Sol. A $\vec{a} = 3\hat{i} + \hat{j}, \vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ As $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} + \lambda \vec{c}$ $\Rightarrow \vec{a}. \vec{c}(\vec{b}) - (\vec{a}. \vec{b})\vec{c} = \vec{b} + \lambda \vec{c}$ $\Rightarrow \vec{a}. \vec{c} = 1, \vec{a}. \vec{b} = -\lambda$ $\Rightarrow (3\hat{i} + \hat{j}). (\hat{i} + 2\hat{j} + \hat{k}) = -\lambda$ $\Rightarrow \lambda = -5$

11. The angle of elevation of the top of a tower from a point A due north of it is α and from a point B at a distance of 9 units due west of A is $\cos^{-1}\left(\frac{3}{\sqrt{13}}\right)$. If the distance of the point B from the tower is 15 units, then $\cot \alpha$ is equal to :

- **13.** Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1,1). If the line AP intersects the line BC at the point Q(k₁, k₂), then k₁ + k₂ is equal to :
 - (A) 2 (B) $\frac{4}{7}$ (C) $\frac{2}{7}$ (D) 4 B

Sol.

 $m_{AC} \longrightarrow \infty$ $m_{PD} = 0$ $D\left(\frac{a+a}{2}, \frac{b+3}{2}\right)$ $D\left(a, \frac{b+3}{2}\right)$ $m_{PD} = 0$ $\frac{\mathbf{b}+\mathbf{3}}{2}-1=0$ b + 3 - 2 = 0b = -1 $\overline{\mathrm{E}\left(\frac{\mathrm{b}+\mathrm{a}}{2},\frac{\mathrm{5}+\mathrm{b}}{2}\right)} = \left(\frac{\mathrm{a}-\mathrm{1}}{2},2\right)$ m_{CB} . $m_{EP} = \Box 1$ $\left(\frac{5-b}{b-a}\right) \cdot \left(\frac{2-1}{\frac{a-1}{2}-1}\right) = -1$ $\left(\frac{6}{-1-a}\right) \cdot \left(\frac{2}{a-3}\right) = -1$ 12 = (1 + a) (a - 3) $12 = a^2 - 3a + a - 3$ \Rightarrow a² - 2a - 15 = 0 ankers (a - 5)(a + 3) = 0a = 5 or a = -3Given ab > 0 a(-1) > 0-a > 0 a < 0 a = –3 Accept AP line A (-3, 3) P(1, 1) $y - 1 = \left(\frac{3-1}{-3-1}\right)(x-1)$ -2y + 2 = x - 1 \Rightarrow x + 2y = 3 Appling(1) Line BC B(-1, 5) C(-3, -1) $(y-5) = \frac{6}{2}(x+1)$ y - 5 = 3x + 3y = 3x + 8....(2) Solving (1) & (2) x + 2(3x + 8) = 3 \Rightarrow 7x + 16 = 3

$$7x = -13$$

$$x = -\frac{13}{7}$$

$$y = 3\left(-\frac{13}{7}\right) + 8$$

$$= \frac{-39 + 56}{7}$$

$$y = \frac{17}{7}$$

$$x + y = \frac{-13 + 17}{7} = \frac{4}{7}$$

- **14.** Let \hat{a} and \hat{b} be two unit vectors such that the angle between them is $\frac{\pi}{4}$. If θ is the angle between the vectors $(\hat{a} + \hat{b})$ and $(\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b}))$, then the value of $164\cos^2 \theta$ is equal to: (A) $90 + 27\sqrt{2}$ (B) $45 + 18\sqrt{2}$ (C) $90 + 3\sqrt{2}$ (D) $54 + 90\sqrt{2}$
- Sol.

Α $\hat{a} \wedge \hat{b} = \frac{\pi}{4} = \phi$ $\hat{a}.\hat{b} = |\hat{a}||\hat{b}|\cos\phi$ $\hat{a}.\hat{b} = \cos\phi = \frac{1}{\sqrt{2}}$ $\cos\theta = \frac{(\hat{a}+\hat{b}).(\hat{a}+2\hat{b}+2(\hat{a}\times\hat{b}))}{|\hat{a}+\hat{b}||\hat{a}+2\hat{b}+2(\hat{a}\times\hat{b})|}$ $|\hat{a} + \hat{b}|^2 = (\hat{a} + \hat{b}).(\hat{a} + \hat{b})$ kers $|\hat{a} + \hat{b}|^2 = 2 + 2\hat{a}.\hat{b}$ $= 2 + \sqrt{2}$ $\hat{a} \times \hat{b} = \frac{\hat{n}}{\sqrt{2}}$ When \hat{n} is vector $\perp \hat{a}$ and \hat{b} let $\vec{c} = \hat{a} \times \hat{b}$ We know $\vec{c} \cdot \vec{a} = 0$ $\vec{c} \cdot \vec{b} = 0$ $|\hat{a} + 2\hat{b} + 2\vec{c}|^2$ $= 1 + 4 + \frac{(4)}{2} + 4 \hat{a} \cdot \hat{b} + 8 \hat{b} \cdot \vec{c} + 4 \vec{c} \cdot \hat{a}$ $=7+\frac{4}{\sqrt{2}}=7+2\sqrt{2}$ Now $(\hat{a} + \hat{b}).(\hat{a} + 2\hat{b} + 2\vec{c})$ $= |\hat{a}|^2 + 2\hat{a} \cdot \hat{b} + 0 + \hat{b} \cdot \hat{a} + 2|\hat{b}|^2 + 0$ = $1 + \frac{2}{\sqrt{2}} + \frac{1}{\sqrt{2}} + 2$ $=3+\frac{3}{\sqrt{2}}$ $\cos\theta = \frac{3 + \frac{3}{\sqrt{2}}}{\sqrt{2 + \sqrt{2}}\sqrt{7 + 2\sqrt{2}}}$

$$\begin{aligned} \cos^{2}\theta &= \frac{9(\sqrt{2}+1)^{2}}{2(2+\sqrt{2})(\sqrt{2}+\sqrt{2})} \\ \cos^{2}\theta &= \left(\frac{9}{2\sqrt{2}}\right)^{\frac{1}{2}(\sqrt{2}+1)} \\ 164\cos^{2}\theta &= \frac{(82)(9)(\sqrt{2}+1)(7-2\sqrt{2})}{\sqrt{2}(7+2\sqrt{2})(7-2\sqrt{2})} \\ &= \left(\frac{9}{\sqrt{2}}\right)^{\frac{1}{2}(\sqrt{2}-47-2\sqrt{2})} \\ (41) &= \left(\frac{9}{\sqrt{2}}\right)^{\frac{9}{2}(\sqrt{2}-47-2\sqrt{2})} \\ &= 90 + 27\sqrt{2} \end{aligned}$$
If $f(\alpha) &= \int_{1}^{\alpha} \frac{108\omega^{1}}{1+t} dt, \alpha > 0$, then $f(e^{3}) + f(e^{-2})$ is equal to:
(A) $9 \qquad (D) \frac{9}{2\log_{e}(10)} \qquad (D) \frac{9}{2\log_{e}(10)} \end{aligned}$
 $f(e^{3}) &= \int_{1}^{a} \frac{108\omega^{1}}{(\pi(10)(1+1)} dt \dots (1)$
 $f(\alpha) &= \int_{1}^{a} \frac{enx}{(\pi(10)(1+1)} dt$
 $t = \frac{1}{x} \Rightarrow x = \frac{1}{t}$
 $dt = \frac{1}{x^{\frac{1}{2}}} dx$
 $= \int_{1}^{a} \frac{enx}{(\pi(10)(1+\frac{1}{x})} (-\frac{1}{x^{\frac{3}{2}}}) dx$
 $f(\alpha) &= \frac{1}{(\pi(10)} \int_{1}^{\frac{3}{4}} \frac{enx}{x(x+1)} dx$
 $f(e^{-3}) &= \frac{1}{(\pi(10)} \int_{1}^{a} \frac{enx}{x(x+1)} dt \dots (2)$
Add (1) & (2)
 $f(e^{3} + f(e^{-3})) = \left(\frac{1}{(\pi(10)} \int_{1}^{3} \frac{enx}{t} dt \right)$
 $= \left(\frac{1}{(\pi(10)} \int_{1}^{\frac{3}{4}} \frac{enx}{(t+1)} \left[1 + \frac{1}{t}\right] dt$
 $= \left(\frac{1}{(\pi(10)} \int_{1}^{\frac{3}{4}} \frac{enx}{(t+1)} dt$
 $= \left(\frac{1}{(\pi(10)} \int_{1}^{3} \frac{enx}{t} dt \right)$
 $e^{1} \frac{enx}{(\pi(10)} \frac{1}{t} \frac{enx}{t} dt$
 $e^{1} \frac{1}{(\pi(10)} \frac{1}{t} \frac{enx}{t} dt$

15.

Sol.

$$= \left(\frac{1}{\log 10}\right) \left(\frac{9}{2}\right)$$
$$= \frac{9}{2\log_e 10}$$

16. The areas of the region $\{(x, y): |x - 1| \le y \le \sqrt{5 - x^2}\}$ is equal to : (A) $\frac{5}{2} \sin^{-1} \left(\frac{3}{5}\right) - \frac{1}{2}$ (B) $\frac{5\pi}{4} - \frac{3}{2}$ (C) $\frac{3\pi}{4} + \frac{3}{2}$ (D) $\frac{5\pi}{4} - \frac{1}{2}$

Sol. D

$$|x - 1| < y < \sqrt{3 - x^{2}}$$

When $|x - 1| = \sqrt{5 - x^{2}}$
 $\Rightarrow (x - 1)^{2} = 5 - x^{2}$
 $\Rightarrow x^{2} - x - 2 = 0$
 $\Rightarrow x = 2, -1$
Required Area = Area of $\triangle ABC$ + Area of region BCD
 $= \frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{vmatrix} + \frac{\pi}{4} (\sqrt{5})^{2} - \frac{1}{2} (\sqrt{5})^{2}$
 $= \frac{5\pi}{4} - \frac{1}{2}$

17. Let the focal chord of the parabola $P: y^2 = 4x$ along the line L: y = mx + c, m > 0 meet the parabola at the points M and N. Let the line L be a tangent to the hyperbola $H: x^2 - y^2 = 4$. If 0 is the vertex of P and F is the focus of H on the positive x-axis, then the area of the quadrilateral OMFN is :

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

H:
$$\frac{x^2}{4} - \frac{y^2}{4} = 1$$

Focus (ae, 0)
F($2\sqrt{2}$, 0)
Line L: y = mx + c pass (1,0)
 $\boxed{p = m + c}$ (1)
Line L is tangent to Hyperbola. $\frac{x^2}{4} - \frac{y^2}{4} = 1$
 $c = \pm \sqrt{4m^2 - 4}$
From (1)
 $-m = \pm \sqrt{4m^2 - 4}$
From (1)
 $-m = \pm \sqrt{4m^2 - 4}$
 $4 = 3m^2$
 $\boxed{\frac{x^2}{\sqrt{3}} = m}$ (as m > 0)
 $c = -m$
 $c = -\frac{2}{\sqrt{3}}$
 $y^2 = 4x$
 $\Rightarrow (\frac{2x - 2}{\sqrt{3}})^2 = 4x$
 $\Rightarrow (\frac{2x - 2}{\sqrt{3}})^2 = 4x$
 $\Rightarrow \frac{x^2 + 1 + 2x = 3x}{|x^2 - 5x + 1 = 0|}$
 $y^2 = 4(\frac{\sqrt{3y} + 2}{2})$
 $y^2 = 2\sqrt{3y} + 4$
 $\Rightarrow y^2 - 2\sqrt{3y} + 4 = 0$
Area
 $\left|\frac{1}{2}\left|0 \times x_1 - 2\sqrt{2} \times x_2 \cdot 0\right|\right|$
 $= \left|\frac{1}{2}\left[-2\sqrt{2}y_1 + 2\sqrt{2}y_2\right]\right|$
 $= \sqrt{2}|y_2 - y_1| = (\sqrt{2})\sqrt{12 + 16}$
 $= \sqrt{56}$
 $= 2\sqrt{14}$

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

- **18.** The number of points, where the function f: $\mathbf{R} \to \mathbf{R}$, $f(x) = |x 1| \cos |x 2| \sin |x 1| + (x 3)|x^2 5x + 4|$, is **NOT** differentiable, is :
 - (A) 1 (B) 2 (C) 3 (D) 4

Sol. B

 $\begin{aligned} f(x) &= |x - 1| \cos |x - 2| \sin |x - 1| + (x - 3)| x^2 - 5x + 4| \\ &= |x - 1| \cos |x - 2| \sin |x - 1| + (x - 3)| x - 1||x - 4| \\ &= |x - 1| [\cos |x - 2| \sin |x - 1| + (x - 3) |x - 4|] \\ &\text{Non differentiable at } x = 1 \text{ and } x = 4. \end{aligned}$

19. Let $S = \{1,2,3, ..., 2022\}$. Then the probability, that a randomly chosen number n from the set S such that HCF (n, 2022) = 1, is :

(A)
$$\frac{128}{1011}$$
 (B) $\frac{166}{1011}$ (C) $\frac{127}{337}$ (D) $\frac{112}{337}$

Sol. D

Total number of elements = 2022 $2022 = 2 \times 3 \times 337$ HCF(n, 2022) = 1is feasible when the value of 'n' and 2022 has no common factor. A = Number which are divisible by 2 from {1,2,3.....2022} n(A) = 1011kers B = Number which are divisible by 3 from {1,2,3.....2022} n(B) = 674 $A \cap B$ = Number which are divisible by 6 from {1,2,3.....2022} 6,12,18....., 2022 337 = n (A∩B) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ = 1011+ 674 - 337 = 1348C= Number which divisible by 337 from {1,.....1022} C = {337, 674, 1011, 1348, 1685, 2022} Already Already Already counted in counted in counted in Set $(A \cup B)$ Set $(A \cup B)$ Set $(A \cup B)$ Total elements which are divisible by 2 or 3 or 337 = 1348 + 2 = 1350Favourable cases = Element which are neither divisible by 2, 3 or 337

= 2022 - 1350= 672 Required probability = $\frac{672}{2022} = \frac{112}{337}$ Let $f(x) = 3^{(x^2-2)^3+4}$, $x \in \mathbf{R}$. Then which of the following statements are true ? 20. P: x = 0 is a point of local minima of f Q: $x = \sqrt{2}$ is a point of inflection of f R: f' is increasing for $x > \sqrt{2}$ (A) Only P and O (B) Only P and R (C) Only Q and R (D) All P, Q and R Sol. D $f(x) = 81.3^{(x^2 - 2)^3}$ $f'(x) = 81.3^{(x^2-2)^3} \cdot \ell n 3.3 (x^2-2)^2 \cdot 2x$ $= (81 \times 6)3^{(x^2-2)^3} x (x^2-2)^2 \ell n 3$ <u>+ - + +</u> $-\sqrt{2}$ 0 x = 6 is point of local min $f'(x) = \underbrace{(486.\ell n3)}_{k} \underbrace{3^{(x^2-2)^3} x (x^2-2)^2}_{g(x)}$ $g'(x) = 3^{(x^2-2)^3} (x^2-2)^2 + x \cdot 3^{(x^2-2)^3} \cdot 4x \cdot (x^2-2)$ $+x. (x^{2}-2)^{2} \cdot 3^{(x^{2}-2)^{3}} \ell n 3.3 (x^{2}-2)^{2} \cdot 2x$ $= 3^{(x^{2}-2)^{3}} (x^{2}-2) [x^{2}-2+4x^{2}+6x^{2} \ell n 3 (x^{2}-2)^{3}]$ $g'(x) = 3^{(x^{2}-2)^{3}} (x^{2}-2) [5x^{2}-2+6x^{2} \ell n 3 (x^{2}-2)^{3}]$ f''(x) = k. g'(x) $f''(\sqrt{2}) = 0, f''(\sqrt{2}^+) > 0, f''(\sqrt{2}^-) < 0$ $x = \sqrt{2}$ is point of inflection f''(x) > 0 for $x > \sqrt{2}$ so f'(x) is increasing

SECTION - B

- **21.** Let $S = \{\theta \in (0,2\pi): 7\cos^2 \theta 3\sin^2 \theta 2\cos^2 2\theta = 2\}$. Then, the sum of roots of all the equations $x^2 2(\tan^2 \theta + \cot^2 \theta)x + 6\sin^2 \theta = 0, \theta \in S$, is_____.
- Sol. 16

 $7\cos^{2}\theta - 3\sin^{2}\theta - 2\cos^{2}2\theta = 2$ $4\cos^{2}\theta + 3\cos^{2}\theta - 2\cos^{2}2\theta = 2$ $2(1 + \cos^{2}2\theta) + 3\cos^{2}2\theta - 2\cos^{2}2\theta = 2$ $2\cos^{2}2\theta - 5\cos^{2}\theta = 0$ $\cos^{2}2\theta (2\cos^{2}2\theta - 5) = 0$ $\cos^{2}\theta = 0$ $\theta = (2n + 1)\frac{\pi}{4}$ $S = \left\{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\right\}$ For all four values of θ $x^2 - 2 (\tan^2\theta + \cot^2\theta) x + 6 \sin^2\theta = 0$ $\Rightarrow x^2 - 4x + 3 = 0$ Sum of roots of all four equations = $4 \times 4 = 16$.

22. Let the mean and the variance of 20 observations $x_1, x_2, ..., x_{20}$ be 15 and 9, respectively. For $\alpha \in \mathbf{R}$, if the mean of $(x_1 + \alpha)^2, (x_2 + \alpha)^2 ..., ... (x_{20} + \alpha)^2$ is 178, then the square of the maximum value of α is equal to ______.

 $\sum_{x_1} = 15 \times 20 = 300 \quad ...(i)$ $\sum_{x_1^2} - (15)^2 = 9 \qquad ...(ii)$ $\sum_{x_1^2} = 234 \times 20 = 4680$ $\sum_{x_1^2} = 178 \Rightarrow \sum (x_1 + \alpha)^2 = 3560$ $\Rightarrow \sum x_1^2 + 2\alpha \sum x_1 + \sum \alpha^2 = 3560$ $4680 + 600\alpha + 20\alpha^2 = 3560$ $\Rightarrow \alpha^2 + 30\alpha + 56 = 0$ $\Rightarrow (\alpha + 28) (\alpha + 2) = 0$ a = -2, -28Square of maximum value of α is 4

23. Let a line with direction ratios a - 4a, -7 be perpendicular to the lines with direction ratios 3, -1,2b and b, a, -2. If the point of intersection of the line $\frac{x+1}{a^2+b^2} = \frac{y-2}{a^2-b^2} = \frac{z}{1}$ and the plane x - y + z = 0 is (α, β, γ) , then $\alpha + \beta + \gamma$ is equal to _____.

```
Sol.
```

```
10
(a,-4a,-7) \perp to (3,-1,2b)
a = 2b
                                       ...(i)
(a,-4a,-7) \perp to (b,a,-2)
3a + 4a - 14b = 0
ab - 4a^2 + 14 = 0
                                       ...(ii)
From Equations (i) and (ii)
2b^2 - 16b^2 + 14 = 0
b^2 = 1
a^2 = 4b^2 = 4
\frac{x+1}{5} = \frac{y-2}{3} = \frac{z}{1} = k
\alpha = 5k - 1, \beta = 3k + 2, \gamma = k
As (\alpha, \beta, \gamma) satisfies x - y + z = 0
5k - 1 - (3k + 2) + k = 0
k = 1
\therefore \alpha + \beta + \gamma = 9k + 1 = 10
```

- **24.** Let a_1, a_2, a_3, \dots be an A.P. If $\sum_{r=1}^{\infty} \frac{a_r}{2^r} = 4$, then $4a_2$ is equal to_____
- Sol. 16

$$s = \frac{a_1}{2} + \frac{a_2}{2^2} + \frac{a_3}{2^3} + \dots$$

$$\frac{\frac{S}{2}}{\frac{2}{2}} = \frac{a_1}{2^2} + \frac{a_2}{2^3} + \dots$$

$$\frac{\frac{S}{2}}{\frac{2}{2}} = \frac{a_1}{2} + d\left(\frac{1}{2^2} + \frac{1}{2^3} + \dots\right)$$

$$\frac{S}{2} = \frac{a_1}{2} + d\left(\frac{\frac{1}{4}}{1 - \frac{1}{2}}\right)$$

$$\therefore S = a_1 + d = a_2 = 4$$

Or $4a_2 = 16$

- **25.** Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $\left(\sqrt[4]{2} + \frac{1}{4\sqrt{3}}\right)^n$, in the increasing powers of $\frac{1}{4\sqrt{3}}$ be $\sqrt[4]{6}$: 1. If the sixth term from the beginning is $\frac{\alpha}{4\sqrt{3}}$, then α is equal to _____.
- Sol. 84

Sol.

$$\frac{T_5}{T_{n-3}} = \frac{{}^{n}C_4(2^{1/4})^{n-4}(3^{-1/4})^4}{{}^{n}C_{n-4}(2^{1/4})^4(3^{-1/4})^{n-4}} = \frac{4\sqrt{6}}{1}$$

$$\Rightarrow 2^{\frac{n-8}{4}}3^{\frac{n-8}{4}} = 6^{1/4}$$

$$\Rightarrow 6^{n-8} = 6$$

$$\Rightarrow n - 8 = 1 \Rightarrow n = 9$$

$$T_6 = {}^{9}C_5(2^{1/4})^4(3^{-1/4})^5 = \frac{84}{4\sqrt{3}}$$

$$\therefore \alpha = 84$$

- **26.** The number of matrices of order 3×3 , whose entries are either 0 or 1 and the sum of all the entries is a prime number, is_____.
 - **282** $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}; a_{ij} \in \{0,1\}$ $\sum a_{ij} = 2,3,5,7$ Total matrix = ${}^{9}C_{2} + {}^{9}C_{3} + {}^{9}C_{5} + {}^{9}C_{7}$ = 282
- **27.** Let p and p + 2 be prime numbers and let

$$\Delta = \begin{vmatrix} p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)! \end{vmatrix}$$

Then the sum of the maximum values of α and β , such that p^{α} and $(p+2)^{\beta}$ divide Δ , is _____.

Sol. 4

$$\Delta = \begin{vmatrix}
P! & (P+1)! & (P+2)! & (P+3)! \\
(P+2)! & (P+3)! & (P+4)!
\end{vmatrix}$$

$$\Delta = P! (P+1)! (P+2)! \begin{vmatrix}
1 & 1 & 1 & 1 \\
P+1 & P+2 & P+3 \\
(P+2)(P+1) & (P+3)(P+2) & (P+4)(P+3)
\end{vmatrix}$$

$$\Delta = 2P! (P+1)! (P+2)! \\
Which is divisible by P^{\alpha} \& (P+2)^{\beta} \\
\therefore \alpha = 3, \beta = 1$$
28. If $\frac{1}{2\times3\times4} + \frac{1}{3\times4\times5} + \frac{1}{4\times5\times6} + \dots + \frac{1}{100\times101\times102} = \frac{k}{101}$, then 34k is equal to ______.
Sol. 286

$$\frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{100.101.102} = \frac{k}{101}$$

$$\frac{1}{2.3} - \frac{1}{3.4} + \frac{1}{3.4} - \frac{1}{4.5} + \dots + \frac{1}{100.101} - \frac{1}{101.102} = \frac{2k}{101}$$

$$\frac{1}{2.3} - \frac{1}{101.102} = \frac{2k}{101}$$

$$\therefore 2k = \frac{101}{6} - \frac{1}{102}$$

$$\therefore 34k = 286$$

29. Let $S = \{4,6,9\}$ and $T = \{9,10,11, ..., 1000\}$. If $A = \{a_1 + a_2 + \cdots + a_k : k \in N, a_1, a_2, a_3, ..., a_k \in S\}$, then the sum of all the elements in the set T - A is equal to _____.

Sol. 11

 $\begin{array}{l} S=\!\{4,\!6,\!9\}\,T=\{9,\!10,\!11,\!...,1000\}\\ A\{a_1+a_2+\!....\!+a_k:\!K\!\in\!N\}\&\,a_i\in S\\ Here by the definition of set 'A'\\ A=\!\{a:a=4x+6y+9z\}\\ Except the element 11, every element of set T is of\\ of the form 4x+6y+9z for some x, y, z\in W\\ \therefore T-A=\{11\}\end{array}$

30. Let the mirror image of a circle $c_1: x^2 + y^2 - 2x - 6y + \alpha = 0$ in line y = x + 1 be $c_2: 5x^2 + 5y^2 + 10gx + 10fy + 38 = 0$. If r is the radius of circle c_2 , then $\alpha + 6r^2$ is equal to_____.

Sol. 12

Image of centre $c_1 \equiv (1,3)$ in x - y + 1 = 0 is given by $\frac{x_1 - 1}{1} = \frac{y_1 - 3}{-1} = \frac{-2(1 - 3 + 1)}{1^2 + 1^2}$ $\Rightarrow x_1 = 2, y_1 = 2$ \therefore Centre of circle $c_2 \equiv (2,2)$ \therefore Equation of c_2 be $x^2 + y^2 - 4x - 4y + \frac{38}{5} = 0$

Now radius of c₂ is
$$\sqrt{4 + 4 - \frac{38}{5}} = \sqrt{\frac{2}{5}} = r$$

(radius of c₁)² = (radius of c₂)²
 $\Rightarrow 10 - \alpha = \frac{2}{5} \Rightarrow \alpha = \frac{48}{5}$
 $\therefore \alpha + 6r^2 = \frac{48}{5} + \frac{12}{5} = 12$

