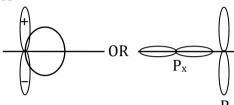
CHEMISTRY JEE-MAIN (July-Attempt) 28 July (Shift-2) Paper Solution

SECTION - A


1. Given below are two statements : One is labelled as Assertion A and the other is labelled as Reason R

Assertion A : Zero orbital overlap is an out of phase overlap.

Reason R: It results due to different orientation/direction of approach of orbitals.

In the light of the above statements, choose the correct answer from the options given below

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false but R is true
- Sol. A

Zero overlapping

Zero overlapping

due to improper

orientation of

orbitals

- 2. The correct decreasing order for metallic character is
 - (A) Na>Mg>Be>Si>P

(B) P>Si>Be>Mg>Na

(C) Si>P>Be>Na>Mg

(D) Be>Na>Mg>Si>P

Sol. A

Na > Mg > Be > Si > P

 ${\bf 3.}$ Given below are two statements : One is labelled as Assertion A and the other is labelled as Reason R

Assertion A : The reduction of a metal oxide is easier if the metal formed is in liquid state than solid state.

Reason R : The value of ΔG^- becomes more on negative side as entropy is higher in liquid state than solid state.

In the light of the above statements, choose the most appropriate answer from the options given below

- (A) Both A and R are correct and R is the correct explanation of A
- (B) Both A and R are correct but R is NOT the correct explanation of A
- (C) A is correct but R is not correct
- (D) A is not correct but R is correct
- Sol. A

 $\Delta G = \Delta - T\Delta S$

So on melting entropy increases and ΔG become more negative so metal ion get easily reduced.

- **4.** The products obtained during treatment of hard water using Clark's method are :
 - (A) CaCO₃ and MgCO₃

(B) Ca(OH)₂ and Mg(OH)₂

(C) CaCO₃ and Mg(OH)₂

(D) Ca(OH)₂ and MgCO₃

Sol. C

$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$$

 $Mg(HCO_3)_2 + 2Ca(OH)_2 \rightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$

5. Statement I : An alloy of lithium and magnesium is used to make aircraft plates.

Statement II: The magnesium ions are important for cell-membrane integrity.

In the light the above statements, choose the correct answer from the options given below

- (A) Both statement I and statement II are true
- (B) Both statement I and statement II are false
- (C) statement I is true but statement II is false
- (D) statement I is false but statement II is true

Sol. B

- → Al and Mg is used to make aircraft plates
- → Ca ions are important for cell membrane.
- **6.** White phosphorus reacts with thionyl chloride to give
 - (A) PCl₅, SO₂ and S₂Cl₂

(B) PCl₃, SO₂ and S₂Cl₂

(C) PCl₃, SO₂ and Cl₂

(D) PCl₅, SO₂ and Cl₂

Sol. B

$$P_4 + 8SO_2Cl_2 \rightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$$

- 7. Concentrated HNO₃ reacts with Iodine to give
 - (A) HI, NO_2 and H_2O

(B) HIO_2 , N_2O and H_2O

(C) HIO₃, NO₂ and H₂O

(D) HIO₄, N₂O and H₂O

Sol. (

 $I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O$

So on melting entropy increases and ΔG become more negative so metal ion get easily reduced.

8. Which of the following pair is not isoelectronic species?

(At. No. Sm, 62; Er, 68; Yb, 70; Lu, 71; Eu, 63; Tb, 65; Tm, 69)

(A)
$$Sm^{2+}$$
 and Er^{3+}

(B) Yb^{2+} and Lu^{3+}

(C) Eu^{2+} and Tb^{4+}

(D) Tb^{2+} and Tm^{4+}

Sol. A, D

•		
	Sm ⁺² → 60e ⁻	yb+2 → 68e-
	$Er^{+3} \Rightarrow 65e^{-}$	Lu+3 → 68e-
	$Eu^{+2} = 61e^{-}$	$Tb^{+2} = 63e^{-}$
	$Tb^{+4} = 61e^{-}$	$Tm^{+4} = 65e^{-}$

9.	iven below are two statements: One is labelled as Assertion A and the other is labelled as
	eason R

Assertion A: Permanganate titrations are not performed in presence of hydrochloric acid.

Reason R: Chlorine is formed as a consequence of oxidation of hydrochloric acid.

In the light of the above statements, choose the correct answer from the options given below

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false but R is true
- Sol. A

 $2KMnO_4 + 16HCl \rightarrow 2MnCl_2 + 2KCl + 8H_2O + Cl_2(gas)$

 $KMnO_4$ oxidise HCl to Cl_2 that's why for acidic medium HCl is not used in permagamate titration.

10. Match List I with List II

List I (Complex)	List II (Hydridization)		
A. Ni(CO) ₄	I. sp ³		
B. [Ni(CN) ₄] ²⁻	II. Sp ³ d ²		
C. [Co(CN) ₆] ³⁻	III. d ² sp ³		
D. [CoF ₆] ³⁻	IV. dsp ²		

Choose the correct answer from the options given below:

(A) A-IV, B-I, C-III, D-II

(B) A-I, B-IV, C-III, D-II

(C) A-I, B-IV, C-II, D-III

(D) A-IV, B-I, C-II, D-III

- Sol. B
 - (A) Ni(CO)₄

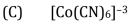
$$Co \rightarrow SFL \rightarrow Pairing$$

₂₈Ni \rightarrow [Ar]4s²3d⁸

11	11/	11/	11/	11/	
3d					4

Sp³ Hybridisation

(B) $[Ni(CN)_4]^{-2}$


 $CN \rightarrow SFL \rightarrow Pairing$

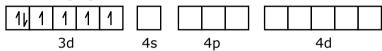
 $_{28}\text{Ni}^{+2} \rightarrow [\text{Ar}] 4\text{s}^{0}3\text{d}^{8}$

dsp³ Hybridisation

4p

 $CN \rightarrow SFL \rightarrow Pairing$

 $_{27}\text{Co}^{+3} \rightarrow [\text{Ar}]4\text{s}^{0}3\text{d}^{6}$



d²sp³ hybridisation

(D) $[CoF_6]^{-3}$

 $F \rightarrow WFL \rightarrow Pairing not possible$

 $27\text{Co}^{+3} \rightarrow [\text{Ar}]4\text{s}^{0}3\text{d}^{6}$

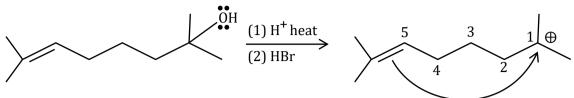
 $sp^3d^2\ hybridisation$

 $A \rightarrow I$, $B \rightarrow IV$, $C \rightarrow III$, $D \rightarrow II$

- **11.** Dinitrogen and dioxygen, the main constituents of air do not react with each other in atmosphere to form oxides of nitrogen because
 - (A) N₂ is unreactive in the condition of atmosphere.
 - (B) Oxides of nitrogen are unstable.
 - (C) Reaction between them can occur in the presence of a catalyst.
 - (D) The reaction is endothermic and require very high temperature.

Sol. D

The reaction is endrothermic and require very high temperature.


12. The major product in the given reaction is

$$\begin{array}{c}
\text{OH} & \text{(1) H+, heat} \\
\text{(2) HBr}
\end{array}$$

(A)
$$Br$$

$$(B)$$
 B_2

Sol. C

Intra moleculas cyclization

$$4 \underbrace{\begin{array}{c} \oplus \\ 5 \\ 3 \end{array}}_{2} \underbrace{\begin{array}{c} Br \\ \hline \\ Br \end{array}}_{Br}$$

13. Arrange the following in increasing order of reactivity towards nitration

A. p-xylene

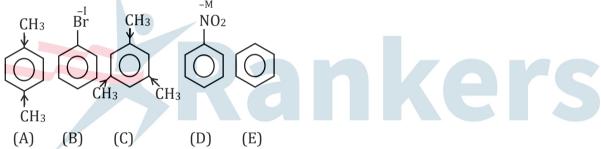
B. bromobenzene

C. mesitylene

D. nitrobenzene

E. benzene

Choose the correct answer from the options given below


(A) C<D<E<A<B

(B) D<B<E<A<C

(C) D < C < E < A < B

(D) C<D<E<B<A

Sol. B

NO₂ – deactivating

Br – deactivating

CH₃ – activating

14. Compound I is heated with Conc. HI to give a hydroxy compound A which is further heated with Zn dust give compound B. Identify A and B.

$$\begin{array}{c|c}
Conc. HI \\
\hline
A
\end{array}
\xrightarrow{Conc. HI} A \xrightarrow{Zn, \Delta} B$$

(B)
$$A = \bigcup_{i=1}^{OH} A_i = \bigcup_{i=1}^{O} A_i = \bigcup_{i=1}^{OH} A_i = \bigcup_{i$$

(D)
$$A = \bigcirc OH$$
, $B = \bigcirc$

Sol. **D**

$$\begin{array}{c}
 & \xrightarrow{\bullet} & \xrightarrow{\bullet}$$

15. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: Aniline on nitration yields ortho, meta & para nitro derivatives of aniline.

Reason R: Nitrating mixture is a strong acidic mixture.

In the light of the above statements, choose the correct answer from the options given below

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false but R is true

Sol. A

NH₂

NH₂

NH₂

NH₂

NH₂

NH₂

NH₂

NH₂

NH₂

$$\frac{1}{1}$$

NH₂

$$\begin{array}{c|c}
\bullet \\
NH_2 \\
H \\
\hline
Strong \\
Acidic sol.
\end{array}$$
Anilinium ion
$$\begin{array}{c}
\bullet \\
NH_3 \\
Strong deactivated
\end{array}$$

16. Match List I with List II

List I (Polymer)

B.
$$\begin{bmatrix} H & H & O & O \\ I & I & II \\ N-(CH_2)_6-N-C-(CH_2)_4-C \end{bmatrix}_{n}$$

List II (Nature)

I. Thermosetting polymer

II. Fibers

III. Elastomer

IV. Thermoplastic polymer

Choose the correct answer from the options given below:

(A) A-II, B-III, C-IV, D-1

(B) A-III, B-II, C-IV, D-I

(C) A-III, B-I, C-IV, D-II

(D) A-I, B-III, C-IV, D-II

Sol. B

(B)
$$\begin{bmatrix} H & H & O & O \\ & & & \parallel & \parallel \\ -N-(CH_2)_6-N-C-(CH_2)_4-C \\ & & & \\ Cl & & & \\ \end{bmatrix}_n \longrightarrow \text{Fibers}$$

(C)
$$\begin{bmatrix} CI \\ CH_2-CH \\ CI \end{bmatrix}_n \longrightarrow \text{Thermoplactice polymer}$$

(D)
$$CH_2$$
 CH_2 Thermoselting polymer

17. Two statement in respect of drug-enzyme interaction are given below

Statement I: Action of an enzyme can be blocked only when inhibitor blocks the active site of the enzyme.

Statement II: An inhibitor can form a strong covalent bond with the enzyme.

In the light of the above statements, choose the correct answer from the options given below

- (A) Both statement I and statement II are true
- (B) Both statement I and statement II are false
- (C) statement I is true but statement II is false
- (D) statement I is false but statement II is true
- Sol. **D**

Drug can bond (a) active sites (b) (allosteric site) of enzyme by formation of covalant bond. Based on durg can be called (a) competitive inhibitors and (b) non-competitive inhibitors.

18. Given below are two statements : One labelled as Assertion A and the other is labelled as Reason R

Assertion A: Thin layer chromatography is an adsorption chromatography.

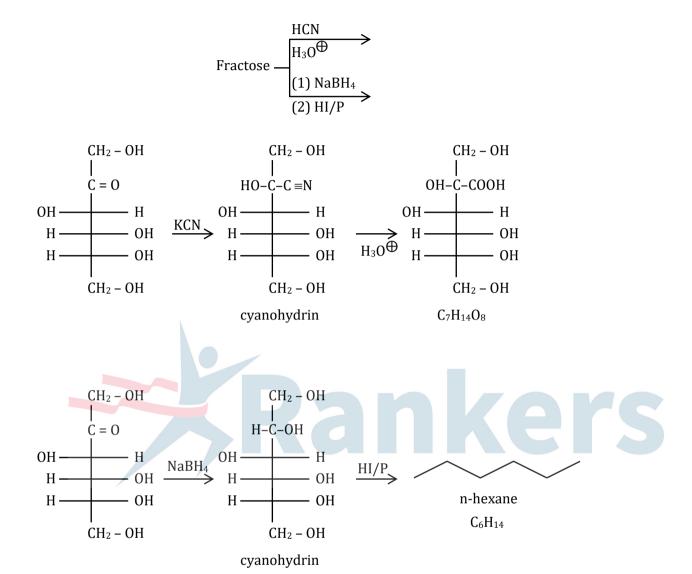
Reason R: A thin layer of silica gel is spread over a glass plate suitable size in thin layer chromatography which acts as an adsorbent.

In the light of the above statements, choose the correct answer from the options given below

- (A) Both A and R are true and R is correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false but R is true
- Sol. A

Thin layer chromatography is a adsorption chromotography and silica get coated on glass plate in thin layer chromatography is used as adsorbent.

19. The formulas of A and B for the following reaction sequence


Fructose
$$\xrightarrow{\text{HCN}\atop \text{H}_3\text{O}^+}$$
 A
$$\xrightarrow{\text{(i) NaBH}_4\atop \text{(ii)HI/p}} \text{B}$$

(A)
$$A = C_7H_{14}O_8$$
, $B = C_6H_{14}$

(B)
$$A = C_7H_{13}O_7$$
, $B = C_7H_{14}O$

(C)
$$A = C_7H_{12}O_8$$
, $B = C_6H_{14}$

(D)
$$A = C_7H_{14}O_8$$
, $B = C_6H_{14}P_6$

20.
$$OH \underbrace{(1) \text{ I}_2/\text{NaHCO}_3}_{(2) \text{ Pyridine},\Delta}$$

Find out major product for the above reaction.

(A)
$$CO_2H$$
 (C) CO_2H (D) CO_2H

$$C-OH$$
 $(1) H_2/NaHCO_3$ $(2) Pyrifine$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} C \\ \end{array} \\ \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c}$$

Cyclic iodonium ion
$$C = 0$$

$$C = 0$$

$$E^{1CB}$$

- 21. 2L of 0.2 M H₂SO₄ is reacted with 2L of 0.1 M NaOH solution, the molarity of the resulting product Na₂SO₄ in the solution is _____millimolar. (Nearest integer)
- Sol. **25**

$$H_2SO_4$$
 + 2NaOH → Na₂SO₄ + M = 0.1 We 2 L V = 2 L V = 4 L $m = M \times V$ $m = \frac{0.1}{4} \times 1000$

$$m - M \times V$$
 $m - M \times V$ $m = 25 \text{ Ans.}$
= 0.2 × 2 = 0.1 × 2 = 0.2

= 0.4 = 0.2
L.R.
$$\frac{0.4}{1}$$
 $\frac{0.2}{2}$ = 0.1

$$L.R. \times NaOH$$

22. Metal M crystallizes into a fcc lattice with the edge length of 4.0×10^{-8} cm. The atomic mass of the metal is ____g/mol. (Nearest integer)

(Use : N_A =6.02×10 $^{23} mol^{\text{-}1}$, density of metal, M = 9.03g cm $^{\text{-}3}$)

Sol. **87**

$$d = \frac{z \times M}{N_A \times volume}$$

$$9.03 = \frac{4 \times M}{6.02 \times 10^{23} \times (4 \times 10^{-8})^3}$$

M = 86.97 gram

 $M \simeq 87$

If the wavelength for an electron emitted from H-atom is 3.3×10⁻¹⁰m, then energy absorbed by 23. the electron in its ground state compared to minimum energy required for its escape from the atom, is____times,(Nearest integer)

[Given: $h = 6.626 \times 10^{-34}$] s]

Mass of electron = 9.1×10^{-31} kg

Sol.

$$\lambda = \tfrac{h}{\sqrt{2mK}}$$

$$K = \frac{h^2}{2m\lambda^2}$$

$$K = \frac{h^2}{2m\lambda^2} = \frac{43.9 \times 10^{-68}}{2 \times 9.1 \times 10^{-31} \times 10.89 \times 10^{-20}}$$

$$K = 2.215 \times 10^{-18}$$

$$E_{abs} = E_{req} + K$$

$$\frac{E_{abe}}{E_{req}} = 1 + \frac{K}{E_{req}} = 1 + \frac{2.215 \times 10^{-18}}{13.6 \times 1.602 \times 10^{-19}} = 2.0166$$

- 24. A gaseous mixture of two substances A and B, under a total pressure of 0.8 atm is in equilibrium with an ideal liquid solution. Themole fraction of substance A is 0.5 in the vapour phase and 0.2 in the liquid phase. The vapour pressure of pure liquid A is____atm. (Nearest integer)
- Sol. 2

$$P_{A} = P_{A}^{0} \times X_{A} = P_{\text{total}} \times Y_{A}$$

$$\Rightarrow P_{A}^{0} \times 0.2 = 0.8 \times 0.5$$

$$\Rightarrow P_A^0 \times 0.2 = 0.8 \times 0.5$$

$$P_A^0 = 2atm$$

25. AT 600K, 2 mol of NO are mixed with 1 mol of O2.

$$2NO_{(g)}+O_2(g) \rightleftharpoons 2NO_2(g)$$

The reaction occurring as above comes to equilibrium under a total pressure of 1 atm. Analysis of the system shows that 0.6 mol of oxygen are present at equilibrium. The equilibrium constant for reaction is _____, (Nearest integer)

Sol.

0.6 mole

0.8 mole

1.2 mole t=ea Total moles = 2.6 moles

$$K_p = \frac{(P_{NO_2})^2}{(P_{NO})^2 (PO_2)} = \frac{\left(\frac{0.8}{2.6} \times 1\right)^2}{\left(\frac{1.2}{2.6}\right)^2 \left(\frac{0.6}{2.6}\right)} = \frac{(0.8)^2 \times 2.6}{(1.2)^2 \times 0.6} = 1.9259$$

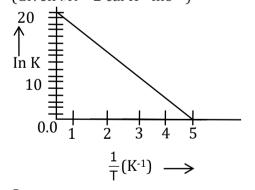
- **26.** A sample of 0.125g of an organic compound when analyzed by Duma's method yields 22.78 mL of nitrogen gas collected over KOH solution at 280 K and 759 mm Hg. The percentage of nitrogen in the given organic compound is_____. (Nearest integer) Given:
 - (a) The vapour pressure of watter of 280 K is 14.2 mm H
 - (b) $R = 0.082 L atm K^{-1} mol^{-1}$

Pressure of nitrogen =
$$759 - 14.2$$

= 744.8 mm of Hg = 0.98 atm

Volume of moist nitrogen gas = 22.78 ml

Man of sample of organic compound = 0.125 g


$$T = 280 k$$

Mole of N₂ gas =
$$\frac{Pv}{RT}$$

= $\frac{0.98 \times 22.78 \times 10^{-3}}{0.0821 \times 280}$
= 0.97×10^{-3} Mole

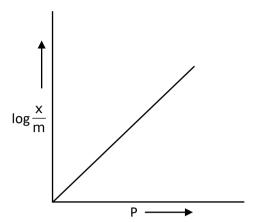
$$\begin{aligned} \text{Man of N}_2 &= 0.9 \times 10^{-3} \times 28 \\ &= 27.16 \times 10^{-3} \text{ g} \\ &= 27.16 \text{ mg} = 0.0276 \text{ g} \end{aligned}$$

% of nitrogen =
$$\frac{0.02716}{0.125} \times 100$$

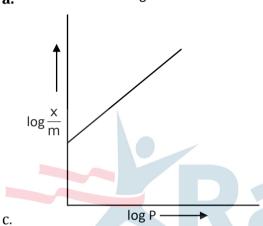
= 21.728 %
 $\approx 22\%$

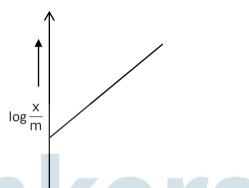
- **27.** On reaction with stronger oxidizing agent like KIO₄, hydrogen peroxide oxidizes with the evolution of O₂. The oxidation number of I in KIO₄ changes to_____
- Sol. +5 $H_2O_2 + KIO_4 \rightarrow KIO_3 + O_2 + H_2O.$
- **28.** For a reaction, given below is the graph of $\ln(k)$ vs $\frac{1}{T}$. The activation energy for the reaction is equal to ____ cal mol⁻¹. (Nearest integer) (Given: R = 2 cal K^{-1} mol⁻¹)

Sol. 8
$$K = Ae^{-Ea/RT}$$

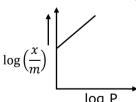

$$lnK = lnA - \left(\frac{Ea}{R}\right)\frac{1}{T}$$

$$Slope of graph = \left(\frac{Ea}{R}\right) = \left(\frac{0.20}{5-0}\right)$$


 $Ea = 4 \times 2 = 8 \text{ cal/mole}$


b.

a.


Sol.

Freundlich adsorption theorem $\frac{x}{m} = kp^{(1/n)}$

$$\frac{x}{n} = kp^{(1/n)}$$

$$\log\left(\frac{x}{m}\right) = \log K + \frac{1}{n}\log(P)$$

 $\log\left(\frac{x}{m}\right) = \log K + \frac{1}{n}\log(P)$ graph between $\log\left(\frac{x}{m}\right)v/s\log P$

30. Among the following the number of state variables is _ Internal energy (U) Volume (V)

Heat (q)

Enthalpy (H)

3 Sol.

State variable \rightarrow Volume, Enthalpy, Internal Energy

Path Variable → Heat