MATHEMATICS JEE-MAIN (July-Attempt) 28 July (Shift-1) Paper Solution

SECTION - A

Let the solution curve of the differential equation $xdy = (\sqrt{x^2 + y^2} + y)dx$, x > 0, intersect the 1. line x = 1 at y = 0 and the line x = 2 at y = α . then the value of α is : $(C)\frac{-3}{2}$ (D) $\frac{5}{2}$ $(A)\frac{1}{2}$ (B) $\frac{3}{2}$ **Official Ans. by NTA (B)** Sol. Motion Ans. (B) $x \, dy = (\sqrt{x^2 + y^2} + y) dx$ $x dy - y dx = \sqrt{x^2 + y^2} dx$ $\frac{xdy-ydx}{x^2} = \sqrt{1 + \frac{y^2}{x^2}} \cdot \frac{dx}{x}$ $\frac{d(y/x)}{\sqrt{1+\left(\frac{y}{x}\right)^2}} = \frac{dx}{x}$ $\ln\left(\frac{y}{x} + \sqrt{\left(\frac{y}{x}\right)^2 + 1}\right) = \ln x + R$ $\frac{y + \sqrt{y^2 + x^2}}{y} = cx$ $\frac{1}{x} - cx$ $y + \sqrt{y^2 + x^2} = cx^2$ $x = 1, y = 0 \implies 0 + 1 = C$ Curve is $y + \sqrt{x^2 + y^2} = x^2$ \Rightarrow C = 1 nkers $x = 2, y = \alpha$ $\alpha + \sqrt{4 + \alpha^2} = 4$ $4 + \alpha^2 = 16 + \alpha^2 - 8\alpha$ $\alpha = \frac{3}{2}$

2. Considering only the principal values of the inverse trigonometric functions, the domain of the function $f(x) = \cos^{-1}\left(\frac{x^2-4x+2}{x^2+3}\right)$ is : (A) $\left(-\infty, \frac{1}{4}\right]$ (B) $\left[-\frac{1}{4}, \infty\right)$ (C) $\left(-\frac{1}{3}, \infty\right)$ (D) $\left(-\infty, \frac{1}{3}\right]$ Sol. Official Ans. by NTA (B) Motion Ans. (B) $\left|\frac{x^2+4x+2}{x^2+3}\right| \le 1$ $\Leftrightarrow (x^2-4x+2)^2 \le (x^2+3)^2 \le 0$

 $\Leftrightarrow (2x^2 - 4x + 5)(-4x - 1) \le 0$ $\Leftrightarrow -4x - 1 \le 0 \rightarrow x \ge -\frac{1}{4}$

Let the vectors $\vec{a} = (1+t)\hat{i} + (1-t)\hat{j} + \hat{k}$, $\vec{b} = (1-t)\hat{i} + (1+t)\hat{j} + 2\hat{k}$ and $\vec{c} = t\hat{i} - t\hat{j} + \hat{k}$, 3. $t \in R$ such that for $\alpha, \beta, \gamma \in R$, $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0} \Rightarrow \alpha = \beta = \gamma = 0$. Then, the set of all values of t is : (A) a non – empty finite set (B) equal to N (C) equal to $R - \{0\}$ (D) equal to R **Official Ans. by NTA (C)** Sol. Motion Ans. (C) By its given condition $: \vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors $\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] \neq 0$... (i) Now, $[\vec{a} \ \vec{b} \ \vec{c}]$ $= \begin{vmatrix} 1+t & 1-t & 1\\ 1-t & 1+t & 2\\ t & -t & 1 \end{vmatrix}$ $C_2 \rightarrow C_1 + C_2$ $= \begin{vmatrix} 1+t & 2 & 1 \\ 1-t & 2 & 2 \end{vmatrix}$ t 0 1 $= 2 \begin{vmatrix} 1+t & 1 & 1 \\ 1-t & 1 & 2 \\ t & 0 & 1 \end{vmatrix}$ = 2[(1+t) - (1-t)+t]= 2[3t] = 6t $[\vec{a} \ \vec{b} \ \vec{c}] \neq 0 \implies t \neq 0$ 4. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $\cos^{-1}(x) - 2\sin^{-1}(x) = \cos^{-1}(2x)$ is equal to : (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$ (B) 1 (A) 0 Official Ans. By NTA (A) Sol. Motion Ans. (A) $\cos^{-1} x - 2 \sin^{-1} x = \cos^{-1} 2x$ $\cos^{-1} x - 2\left(\frac{\pi}{2} - \cos^{-1} x\right) = \cos^{-1} 2x$ $\cos^{-1} x - \pi + 2 \cos^{-1} x = \cos^{-1} 2x$ $3\cos^{-1} x = \pi + \cos^{-1} 2x$... (i) $\cos(3\cos^{-1}x) = \cos(\pi + \cos^{-1}2x)$ $4x^3 - 3x = -2x$ $4x^3 = x \implies x = 0, \pm \frac{1}{2}$ All satisfy the original equation Sum = $-\frac{1}{2}$ to $+\frac{1}{2} = 0$

5. Let the operations $*, \odot \in \{\Lambda, V\}$. If $(P * q) \odot (p \odot -q)$ is a tautology, then the ordered pair (∗,⊙) (A) (A,V) (B) (V,V) $(C)(\Lambda,\Lambda)$ (D) (A,V) Sol. **Official Ans. by NTA (B)** Motion Ans. (B) Well check each option For (A) $* = \lor$ of $\bigcirc = \Lambda$ $(p \lor q) \lor (p \lor \sim q)$ $\equiv p \lor (q \land \sim q)$ $\equiv p \lor (contradiction) \equiv p$ For B : $* = \lor, \bigcirc = \lor$ $(p \lor q) \lor (p \lor \sim q) \equiv t$ using Venn diagrams

6. Let a vector \vec{a} has magnitude 9, Let a vector \vec{b} be such that for every $(x, y) \in R \times R - \{(0,0)\}$, the vector $(x\vec{a} + y\vec{b})$ is perpendicular to the vector $(6y\vec{a} - 18x\vec{b})$ then the value of $|\vec{a} \times \vec{b}|$ is equal to (A) $9\sqrt{3}$ (B) $27\sqrt{3}$ (C) 9 (D) 81

(A) $9\sqrt{3}$ (B) $27\sqrt{3}$ (C) 9 Sol. Official Ans. By NTA (B) Motion Ans. (B) $|\vec{a}| = 9 \& (x\vec{a} + y\vec{b}) \cdot (6y\vec{a} - 18x\vec{b}) = 0$ $\Rightarrow 6xy|\vec{a}|^2 - 18x^2(\vec{a} \cdot \vec{b}) + 6y^2(\vec{a} \cdot \vec{b}) - 18xy|\vec{b}| = 0$ $\Rightarrow 6xy(|\vec{a}|^2 - 3|\vec{b}|^2) + (\vec{a} \cdot \vec{b})(y^2 - 3x^2) = 0$ This should hold $\forall x, y \in \mathbb{R} \times \mathbb{R}$ $\therefore |\vec{a}| = 3|\vec{b}|^2 \& (\vec{a} \cdot \vec{b}) = 0$ Now $|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 \times |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$ $= |\vec{a}|^2 \cdot \frac{|\vec{a}|^2}{3} ||$ $\therefore |\vec{a} \times \vec{b}| = \frac{|\vec{a}|^2}{3} = \frac{81}{\sqrt{3}} = 27\sqrt{3}$

7. For $t \in (0,2\pi)$, if ABC is an equilateral triangle with vertices A(sint, - cost), B(cost, sint) and C(a, b) such that its orthocentre lies on a circle with centre $(1,\frac{1}{3})$, then $(a^2 - b^2)$ is equal to : (A) $\frac{8}{3}$ (B) 8 (C) $\frac{77}{9}$ (D) $\frac{80}{9}$

Sol. Official Ans. by NTA (B) Motion Ans. (B)

8.

Sol.

 $s \equiv sin t, c \equiv cost$ Let orthocenter be (h, k) Since it is an equilateral triangle hence orthocenter coincides with centroid. \therefore a + s + c = 3h, b + s - c = 3k : $(3h - a)^2 + (3k - b)^2 = (s + c)^2 + (s - c)^2 = 2(s^2 + c^2) = 2$ $\therefore \left(h - \frac{a}{3}\right)^2 + \left(k - \frac{b}{3}\right)^2 = \frac{2}{9}$ Circle center at $(\frac{a}{2}, \frac{b}{2})$ Gives, $\frac{a}{3} = 1$, $\frac{b}{3} = \frac{1}{3} \implies a = 3$, b = 1 $\therefore a^2 - b^2 = 8$ For $\alpha \in N$, consider a relation R on N given by R = {(x, y) : $3x + \alpha y$ is a multiple of 7}. The relation R is an equivalence relation if and only if : (A) $\alpha = 14$ (B) α is a multiple of 4 (C) 4 is the remainder when α is divided by 10 (D) 4 is the remainder when α is divided by 7 **Official Ans. By NTA (D)** Motion Ans. (D) For R to be reflective \Rightarrow x R x \Rightarrow 3x + α x = 7x $(3 + \alpha)x = 7x$ \Rightarrow \Rightarrow 3 + α = 7 λ \Rightarrow $\alpha = 7\lambda - 3 = 7N + 4$, K, λ , N \in I \therefore when α divided by 7, remainder is 4. R to be symmetric xRy \Rightarrow yRx $3x + \alpha y = 7N_1$, $3y + \alpha x = 7N_2$ \Rightarrow (3 + α)(x + y) = 7(N₁ + N₂) = 7N₃ Which holds when $3 + \alpha$ is multiple of 7 $\therefore \alpha = 7N + 4$ (as did earlier) R to be transitive xRy & yRz \Rightarrow xRz. $3x + \alpha y = 7N_1 \& 3y + \alpha z = 7N_2$ and $3x + \alpha z = 7N_3$ $\therefore 3x + 7N_2 - 3y = 7N_3$ \therefore 7N₁ - α y + 7N₂ - 3y = 7N₃ \therefore 7(N₁ + N₂) - (3 + α)y = 7N₃ $\therefore (3 + \alpha)y = 7N$ Which is true again when $3 + \alpha$ divisible by 7, i.e. when α divided by 7, remainder is 4.

9. Out of 60% female and 40% male candidates appearing in an exam, 60% candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. the probability, that the chosen candidate is a female, is :

11. If the tangents drawn at the points P and Q on the parabola $y^2 = 2x - 3$ intersect at the point R(0,1), then the orthocentre of the triangle PQR is : (A) (0, 1) (P) (2, 1) (C) (6, 2) (D) (2, 1)

12. Let C be the centre of the circle $x^2 + y^2 - x + 2y = \frac{11}{4}$ and P be a point on the circle. A line passes through the point C, makes an angle of $\frac{\pi}{4}$ with the line CP and intersects the circle at the points Q and R. then the area of the triangle PQR (in unit²) is :

(A) 2 (B) $2\sqrt{2}$ (C) $8\sin(\frac{\pi}{8})$ (D) $8\cos(\frac{\pi}{8})$ Sol. Official Ans. by NTA (B) Motion Ans. (B) $x^{2} + y^{2} - x + 2y = \frac{11}{4}$ $(x - \frac{1}{2})^{2} + (y + 1)^{2} = (2)^{2}$ Or Δ PQR PR = QR sin 22 $\frac{1}{2}$

P

$$= 4 \sin \frac{\pi}{8}$$
PQ = QR cos 22 $\frac{1}{2}$

$$= 4 \cos \frac{\pi}{8}$$
As $\triangle PQR = \frac{1}{2}PR \times PQ$

$$= \frac{1}{2} (4 \sin \frac{\pi}{8}) (4 \cos \frac{\pi}{8})$$

$$= 4 \sin \frac{\pi}{4} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$
13. The remainder when $7^{2022} + 3^{2022}$ is divided by 5 is :
(A) 0 (B) 2 (C) 3 (D) 4
Sol. Official Ans. By NTA (C)
Motion Ans. (C)
72022 + 3002
= (49)^{1011} + (9)^{1011}
$$= (50 - 1)^{1011} + (10 - 1)^{1011}$$

$$= 5\lambda - 1 + 5S - 1$$

$$= 5m - 2$$
Remainder $= 5 - 2 = 3$
14. Let the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ and the matrix $B_0 = A^{49} + 2A^{98}$. If $B_n = Adj(B_{n-1})$ for all $n \ge 1$,
then det(B₄) is equal to :
(A) 3^{28} (B) 2³⁰ (C) 3³² (D) 3³⁶

Sol. **Official Ans. By NTA (C)** Motion Ans. (C) $A^2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $C_1 \leftrightarrow C_3$ $-\begin{bmatrix}1&0&0\\0&0&1\end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ $R_2 \leftrightarrow R_3$ [1 0 0] $|0 \ 1 \ 0| = I$ 10 0 1 $B_0 = A^{49} + 2A^{98}$ = A + 2I $B_n = Adj. (B_{n-1})$ $B_4 = Adj(Adj(Adj(Adj B_0)))$ $= |B_0|^{(n-1)^4}$ ankers $= |B_0|^{16}$ $B_0 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ 2 1 0 $= [0 \ 2 \ 1]$ 1 0 2 = 2(4 - 0) - 1(0 - 1)= 9 $B_4(9)^{16} = (3)^{32}$ Let $S_1 = \left\{ z_1 \in C : |z_1 - 3| = \frac{1}{2} \right\}$ and $S_2 = \left\{ z_2 \in C : |z_2 - |z_2 + 1| \right\} = |z_2 + |z_2 - 1|$. then for $z_1 \in C$. 15. S_1 and $z_2 \in S_2$, the least value of $|\mathbf{z}_2 - \mathbf{z}_1|$ is : $(C)\frac{3}{2}$ (D) $\frac{5}{2}$ $(B)\frac{1}{2}$ (A) 0 Sol. **Official Ans. By NTA (C)** Motion Ans. (C) $|\mathbf{z}_2 + |\mathbf{z}_2 - 1||^2 = |\mathbf{z}_2 - |\mathbf{z}_2 + 1||^2$ \Rightarrow (z₂ + |z₂ - 1|) ($\overline{z_2}$ + |z₂ - 1|) = (z₂ - |z₂ + 1|) ($\overline{z_2}$ - |z₂ + 1|)

- **16.** The foot of the perpendicular from a point on the circle $x^2 + y^2 = 1$, z = 0 to the plane 2x + 3y + z = 6 lies on which one of the following curves ? (A) $(6x + 5y - 12)^2 + 4(3x + 7y - 8)^2 = 1$, z = 6 - 2x - 3y(B) $(5x + 6y - 12)^2 + 4(3x + 5y - 9)^2 = 1$, z = 6 - 2x - 3y(C) $(6x + 5y - 12)^2 + 4(3x + 5y - 9)^2 = 1$, z = 6 - 2x - 3y
 - (C) $(6x + 5y 14)^2 + 9(3x + 5y 7)^2 = 1$, z = 6 2x 3y(D) $(5x + 6y - 14)^2 + 9(3x + 7y - 8)^2 = 1$, z = 6 - 2x - 3y
- Sol. Official Ans. By NTA (B) Motion Ans. (B)

$$\frac{h-\cos\theta}{2} = \frac{k-\sin\theta}{3} = \frac{w-0}{1}$$

$$= \frac{-1(2\cos\theta+3\sin\theta-6)}{14}$$

$$h = \frac{-2(2\cos\theta+3\sin\theta-6)}{14} + \cos\theta$$

$$= \frac{10\cos\theta-6\sin\theta+12}{14}$$

$$k = \frac{5\sin\theta-6\cos\theta+18}{14}$$
Elementry sin θ and cos θ

$$(5h + 6k - 12)^2 + 4(3h + 5k - 9)^2 = 1$$

If the minimum value of $f(x) = \frac{5x^2}{2} + \frac{\alpha}{x^5}$, x > 0, is 14, then the value of α is equal to : 17.

- (A) 32 (C) 128 (B) 64 (D) 256 **Official Ans. By NTA (C)** Sol. Motion Ans. (C) $\frac{x^2}{2} + \frac{x^2}{2} + \frac{x^2}{2} + \frac{x^2}{2} + \frac{x^2}{2} + \frac{x^2}{2} + \frac{\alpha}{2x^5} + \frac{\alpha}{2x^5}$ $\geq 7\left(\frac{\alpha^2}{2^7}\right)^{\frac{1}{7}}$ $\frac{7 \cdot (\alpha)^{2/7}}{2} = 14$ $(\alpha^2)^{1/7} = 2^2$ $\alpha = (2^2)^{7/2} = 2^7$ $\alpha = 128$
- Let α, β and γ be three positive real numbers, let $f(x) = \alpha x^5 + \beta x^3 + \gamma x, x \in R$ and g: $R \to R$ 18. be such that g(f(x)) = x for all $x \in R$. If $a_1, a_2, a_3, ..., a_n$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n}\sum_{i=1}^{n}f(a_{i})\right)\right)$ is equal to :
- (A) 0 (C) 9(D) 27 (B) 3 **Official Ans. By NTA (A)** Sol. Motion Ans. (A) kers **Consider a case when** $\alpha = \beta = 0$ then $f(x) = \gamma x$ $g(x) = \frac{x}{v}$ $\frac{1}{n} \sum_{i=1}^{n} f(a_i) \Rightarrow \frac{1}{n} (a_1 + a_2 + \ldots + a_n) = 0$ \Rightarrow f(0) = 0 $\Rightarrow f(g(0))$

Consider the sequence a₁, a₂, a₃,..., such that a₁ = 1, a₂ = 2 and $a_{n+2} = \frac{2}{a_{n+1}} + a_n$ for n = 1, 2,3, ..., 19. $\text{if}\left(\frac{a_1 + \frac{1}{a_2}}{a_3}\right) \left(\frac{a_2 + \frac{1}{a_3}}{a_4}\right) \left(\frac{a_3 + \frac{1}{a_4}}{a_5}\right) \dots \left(\frac{a_{30} + \frac{1}{a_{31}}}{a_{32}}\right) = 2^{\alpha} ({}^{61}C_{31}), \text{ then } \alpha \text{ is equal to}$ (B) -31 (A) -30 (C) -60 (D) -61 **Official Ans. By NTA (C)** Sol. Motion Ans. (C) $a_{n+2} a_{n+1} - a_{n+1} \cdot a_n = 2$ series will satisfy a1a2, a2a3, a3a4, a4a5 1.2, 2.2, 2.3, 2.4 $\frac{a_n + \frac{1}{a_{n+1}}}{a_{n+1}} = \frac{a_{n+2} - \frac{1}{a_{n+1}}}{a_{n+1}}$

$$\frac{a_{n+1}}{a_{n+2}} = \frac{a_{n+2}}{a_{n+2}}$$

$$= 1 - \frac{1}{a_{n+1}a_{n+2}}$$
$$= 1 - \frac{1}{2(r+1)}$$
$$= \frac{2r+1}{2(r+1)}$$

Now proof is given by

$$= \prod_{r=1}^{30} \frac{(2r+1)}{2(r+1)}$$

= $\frac{(1 \cdot 3 \cdot 5 \cdot \dots \cdot 61)}{\underline{|31 \cdot 2^{30}|}} \times \frac{2^{30} \times \underline{|30|}}{2^{30} \times \underline{|30|}}$
= $\frac{\underline{|61|}}{2^{60}\underline{|31 \cdot |30|}}$
 $\alpha = -60$

- **20.** The minimum value of the twice differentiable function $(x) = \int_0^x e^{x-t} f'(t) dt (x^2 x + 1)e^x$, $x \in R$, is
 - $x \in R$, is (A) $-\frac{2}{\sqrt{e}}$ (B) $-2\sqrt{e}$ (C) $-\sqrt{e}$ (D) $\frac{2}{\sqrt{e}}$
- Sol. Official Ans. By NTA (A) Motion Ans. (A)

$$f(x) = e^{x} \cdot \int_{0}^{x} \frac{f'(t)}{e^{t}} dt$$

$$f'(x) = e^{x} \cdot \int_{0}^{x} \frac{f'(t)}{e^{t}} dt + e^{x} \cdot \frac{f'(x)}{e^{x}} - [(2x-1) \cdot e^{x} + (x^{2} - x + 1) \cdot e^{x}]$$

$$\int_{0}^{x} \frac{f'(t)}{e^{t}} dt = x^{2} + x$$

$$\frac{f'(x)}{e^{x}} = 2x + 1$$

$$f'(x) = (2x + 1) \cdot e^{x}$$

$$f'(x) = 0 \implies x = -\frac{1}{2}$$

$$f(x) = (2x + 1) \cdot e^{x} - 2e^{x} + C$$

$$f(0) = -1$$

$$-1 = 1 - 2 + C$$

$$C = 0$$

$$f(x) = e^{x}(2x - 1)$$

$$f\left(-\frac{1}{2}\right) = -\frac{2}{\sqrt{e}}$$

21. Let S be the set of all passwords which are six to eight characters long, where each character is either an alphabet from {A, B,C,D,E} or a number from {1, 2,3,4, 5} with the repletion of characters allowed. if the number of passwords in S whose at least one character is a number from {1, 2,3,4,5} is $\alpha \times 5^6$, then α is equal to :

Sol. Official Ans. By NTA (7073) Motion Ans. (7073) Required no. = Total – no character from {1, 2, 3, 4, 5} = $(10^6 - 5^6) + (10^7 - 5^7) + (10^8 - 5^8)$ = $10^6 (1 + 10 + 100) - 5^6 (1 + 5 + 25)$ = $10^6 \times 111 - 5^6 \times 31$ = $26 \times 5^6 \times 111 - 5^6 \times 31$ = $5^6 (2^6 \times 111 - 31)$ = $5^6 \times 7073$ $\therefore \alpha = 7073$

- **22.** Let P(-2, -1, 1) and $Q\left(\frac{56}{11}, \frac{43}{17}, \frac{111}{17}\right)$ be the vertices of the rhombus PRQS. if the direction ratios of the diagonal RS are α , -1, β where both α and β are integers of minimum absolute values, then $\alpha^2 + \beta^2$ is equal to :
- Sol. Official Ans. By NTA (450) Motion Ans. (450) DR's of RS = $(\alpha, -1, \beta)$ DR of PQ = $(\frac{56}{17} + 2, \frac{43}{17} + 1, \frac{111}{17} - 1)$ = $(\frac{90}{17}, \frac{60}{17}, \frac{94}{17})$ $\frac{90}{17} \alpha + \frac{60}{17}(-1) + \frac{94}{17} \beta = 0$ 90 α + 94 β = 60 $\beta = \frac{60-90\alpha}{94}$ $\beta = \frac{-30(2-3\alpha)}{94}$ $\beta = -30\frac{(3\alpha-2)}{94}$ $\beta = -30\frac{(3\alpha-2)}{94}$ $\beta = -\frac{15}{47}(3\alpha - 2)$ $\Rightarrow \frac{\beta}{-15} = \frac{3\alpha-2}{47}$ $\Rightarrow \beta = -15, \alpha = -15$ $\alpha^2 + \beta^2 = 225 + 225$ = 450

- **23.** Let $f: [0,1] \rightarrow R$ be a twice differentiable function in (0, 1) such that f(0) = 3 and f(1) = 5. if the line y = 2x + 3 intersect the graph of f at only two distinct point in (0, 1), then the least number of points $x \in (0,1)$, at which f''(x) = 0, is :
- Sol. Official Ans. By NTA (2) Motion Ans. (2)

$$f'(a) = f'(b) = f'(c) = 2$$

 \Rightarrow f'' (x) is zero

for at least $x_1 \in (a, b) \& x_2 \in (b, c)$

24. If

- $\frac{15x^3}{\sqrt{1+x^2+\sqrt{(1+x^2)^3}}} dx = \alpha\sqrt{2} + \beta\sqrt{3}$, where α, β are integers, then $\alpha + \beta$ is equal to
- Sol. Official Ans. By NTA (10)

Motion (10)

- Put 1 + $x^2 = t^2$
- 2x dx = 2t dt

x dx = t dt

$$\therefore \int_{1}^{2} \frac{15(t^{2}-1)t \, dt}{\sqrt{t^{2}+t^{3}}}$$

$$15 \int_{1}^{2} \frac{t(t^{2}-1)}{t\sqrt{1+t}} \, dt$$
Put 1 + t = u²

$$15 \int_{\sqrt{2}}^{\sqrt{3}} \frac{(u^2 - 1)^2}{u} \times 2u \, du$$

$$30 \int_{\sqrt{2}}^{\sqrt{3}} (u^4 - 2u^2) du$$

$$30(\frac{u^5}{5} - \frac{2u^3}{3}) \frac{\sqrt{3}}{\sqrt{2}}$$

$$30[\frac{1}{5}((\sqrt{3})^5 - (\sqrt{2})^5) - \frac{2}{3}((\sqrt{3})^3 - (\sqrt{2})^3)]3$$

$$30[\frac{1}{5}(9\sqrt{3} - 4\sqrt{2}) - \frac{2}{3}(3\sqrt{3} - 2\sqrt{2})]$$

$$30[\frac{-1}{5} \times \sqrt{3} + \frac{8}{15}\sqrt{2}]$$

$$- 6\sqrt{3} + 16\sqrt{2} = \alpha \sqrt{2} + \beta \sqrt{3}$$

$$\alpha = 16, \beta = -6$$

$$\therefore \alpha + \beta = 10$$

Let $A = \begin{bmatrix} 1 & -1 \\ 2 & \alpha \end{bmatrix}$ and $B = \begin{bmatrix} \beta & 1 \\ 1 & 0 \end{bmatrix}$, $\alpha, \beta \in R$. Let α_1 be the value of α which satisfies $(A + B)^2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. 25. $A^{2} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ and α_{2} be the value of α which satisfies $(A + B)^{2} = B^{2}$. then $|\alpha_{1} - \alpha_{2}|$ is equal to : Official Ans. By NTA (2) Motion Ans. (2)

Sol.

A + B =
$$\begin{bmatrix} \beta + 1 & 0 \\ 3 & \alpha \end{bmatrix}$$

(A + B)² = $\begin{bmatrix} \beta + 1 & 0 \\ 3 & \alpha \end{bmatrix} \begin{bmatrix} \beta + 1 & 0 \\ 3 & \alpha \end{bmatrix}$
= $\begin{bmatrix} (\beta + 1)^2 & 0 \\ 3(\beta + 1) + 3\alpha & \alpha^2 \end{bmatrix}$
A² = $\begin{bmatrix} 1 & -1 \\ 2 & \alpha \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & \alpha \end{bmatrix}$
= $\begin{bmatrix} -1 & -1 - \alpha \\ 2 + 2\alpha & \alpha^2 - 2 \end{bmatrix}$
 $\therefore \begin{bmatrix} 1 & -\alpha + 1 \\ 2\alpha + 4 & \alpha^2 \end{bmatrix} = \begin{bmatrix} (\beta + 1)^2 & 0 \\ 3(\alpha + \beta + 1) & \alpha^2 \end{bmatrix}$
B² = $\begin{bmatrix} \beta & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \beta & 1 \\ 1 & 0 \end{bmatrix}$

$$= \begin{bmatrix} \beta^2 + 1 & \beta \\ \beta & 1 \end{bmatrix} = \begin{bmatrix} (\beta^2 + 1)^2 & 0 \\ 3(\beta + 1) + 3\alpha & \alpha^2 \end{bmatrix}$$

$$\therefore \beta = 0, \alpha = -1 = \alpha_2$$

$$|\alpha_1 - \alpha_2| = |1 - (-1)| = 2$$

26. For $p, q \in R$ consider the real valued function $f(x) = (x - p)^2 - q, x \in R$ and q > 0. let a_1, a_2, a_3 and a_4 be in an arithmetic progression with mean p and positive common difference. if $|f(a_i)| = 500$ for all I = 1, 2, 3, 4, then the absolute difference between the roots of f(x) = 0 is

Sol. Official Ans. NTA (50)
Motion Ans. (50)

$$f(x) = 0 \Rightarrow (x - p)^2 - q = 0.$$

Roots are $p + \sqrt{q}$, $p - \sqrt{q}$ absolute difference between roots is $2\sqrt{q}$.
Now, $|f(a)| = 500$
Let a_1, a_2, a_3, a_4 are $a, a + d, a + 2d, a + 3d$
 $|f(a_4)| = 500$
 $|(a_1 - p)^2 - q| = 500$
 $\Rightarrow \frac{9}{4} d^2 - q = 500$... (1)
And $|f(a_1)|^2 = |f(a_2)|^2$
 $((a_1 - p)^2 - q)^2 = ((a_2 - p)^2 - q)^2$
 $\Rightarrow ((a_1 - p)^2 - (a_2 - p)^2) ((a_1 - p)^2 - q + (a_2 - p)^2 - q) = 0$
 $\Rightarrow \frac{9}{4} d^2 - q + \frac{d^2}{2} - q = 0$
 $2q = \frac{10d^2}{4} \Rightarrow q = \frac{5d^2}{4}$
 $\Rightarrow d^2 = \frac{4q}{5}$
From equation $(1)\frac{9}{4} \cdot \frac{4 \cdot q}{5} - q = 500$
And $2\sqrt{q} = 2 \times \frac{50}{2} = 50$

- 27. For the hyperbola H : $x^2 y^2 = 1$ and the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b > 0, let the (1) eccentricity of E be reciprocal of the eccentricity of H, and (2) the line $y = \sqrt{\frac{5}{2}}x + k$ be a common tangent of E and H. then $4(a^2 + b^2)$ is equal to :
- Sol. Official Ans. By NTA (3)

Motion Ans. (3)

$$e_{\rm E}=\sqrt{1-\frac{b^2}{a^2}}, \ e_{\rm H}=\sqrt{2}$$

 $\Rightarrow e_{E} = \frac{1}{e_{H}}$ $\Rightarrow \frac{a^{2} - b^{2}}{a^{2}} = \frac{1}{2}$ $2a^{2} - 2b^{2} = a^{2}$ $a^{2} = 2b^{2}$ And $y = \sqrt{\frac{5}{2}x} + K$ is tangent to ellipse then $K^{2} = a^{2} \times \frac{5}{2} + b^{2} = \frac{3}{2}$ $6b^{2} = \frac{3}{2} \Rightarrow b^{2} = \frac{1}{4} \text{ and } a^{2} = \frac{1}{2}$ $\therefore 4 \cdot (a^{2} + b^{2}) = 3$

28. let x_1 , x_2 , x_3 ,...., x_{20} be in geometric progression with $x_1 = 3$ and the common ratio $\frac{1}{2}$. A new data is constructed replacing each x_i by $(x_i - i)^2$. if \bar{x} is the mean of new data. then the greatest integer less than or equal to \bar{x} is

Sol. Official Ans. By NTA (142)

Motion Ans. (142)

$$\sum x_0^1 = \frac{3\left(1 - \left(\frac{1}{2}\right)\right)^{20}}{1 - \frac{1}{2}} = 6\left(1 - \frac{1}{2^{20}}\right)$$
$$= \sum_{i=1}^{20} (x_i - i)^2$$
$$= \sum_{i=1}^{20} (x_i)^2 + (i)^2 - 2x_i i$$

Now
$$\sum_{i=1}^{20} (x_i)^2 = \frac{9(1-(\frac{1}{2}))^{20}}{1-\frac{1}{2}} = 12(1-\frac{1}{2^{40}})$$

 $\sum_{i=1}^{20} t^2 = \frac{1}{6} \times 20 \times 21 \times 41 = 2870$
 $\sum_{i=1}^{20} x_i \cdot i = S = 3 + 2.3 \frac{1}{2} + 3.3 \frac{1}{2^2} + 4.3 \frac{1}{2^3} + \dots AGP$
 $= 6(2-\frac{22}{2^{20}})$
 $\bar{x} = \frac{12-\frac{12}{2^{40}} + 2870 - 12(2-\frac{22}{2^{20}})}{20}$
 $\bar{x} = \frac{2858}{20} + (\frac{-12}{(1^2} + \frac{22}{2^{20}}) \times \frac{1}{20}$
 $[\bar{x}] = 142$
29. $\lim_{x\to 0} \frac{((x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x)))^{\frac{100}{x}}}{(x+2)^2 + 2(x+2)^2 + 2(x+2)^{2+3}\sin(x+2)})^{\frac{100}{x}}$ is equal to :
Sol. Official Ans. By NTA (1)
Motion Ans. (1)
 $\lim_{x\to 0} \frac{((x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x)))^{\frac{100}{x}}}{(x+2)^3 + 2(x+2)^2 + 3\sin((x+2))})^{-1}]_x^{\frac{100}{x}}$
From 1°
 $= e^{\lim_{x\to 0} \left[\frac{((x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x)))}{(x+2)^3 + 2(x+2)^2 + 3\sin((x+2))}\right]^{-1}]_x^{\frac{100}{x}}$
 $= e^{\lim_{x\to 0} \left[\frac{\sin(((x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x)))}{(x+2)^3 + 2(x+2)^2 + 3\sin((x+2))}\right]^{-1}]_x^{\frac{100}{x}}$
 $= e^{\lim_{x\to 0} \left[\frac{\sin(((x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x)))}{(x+2)^3 + 2(x+2)^2 + 3\sin((x+2\cos x))}\right]^{-1}]_x^{\frac{100}{x}}$
 $= e^{\frac{100}{16x} \left[\frac{\sin(((x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x)))}{(x+2)^3 + 2(x+2)^2 + 3\sin((x+2\cos x))}\right]^{-1}]_x^{\frac{100}{x}}$
 $= e^{\frac{100}{16x} \left[\frac{100}{x} - \frac{2(x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x))}{(x+2)^3 + 2(x+2)^2 + 3\sin((x+2\cos x))}\right]^{-1}]_x^{\frac{100}{x}}$
 $= e^{\frac{100}{16x} \left[\frac{100}{x} - \frac{2(x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin((x+2\cos x))}{(x+2)^3 + 2(x+2)^2 + 3\sin(x+2\cos x)}\right]^{-1}]_x^{\frac{100}{x}}$
 $= e^{\frac{100}{16x} \left[\frac{100}{x} - \frac{2(x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin(x+2\cos x)}{(x+2)^3 + 2(x+2)^2 + 3\sin(x+2\cos x)}\right]^{-1}}$
 $= e^{\frac{100}{16x} \left[\frac{100}{x} - \frac{2(x+2\cos x)^3 + 2(x+2\cos x)^2 + 3\sin(x+2\cos x)}{(x+2)^3 + 2(x+2)^2 + 3\sin(x+2\cos x)}\right]}$
Using L'H rule;
 $= e^0 = 1$

- The sum of all real values of x for which $\frac{3x^2-9x+17}{x^2+3x+10} = \frac{5x^2-7x+19}{3x^2+5x+12}$ is equal to : 30.
- Official Ans. By NTA (6) Sol.

Motion Ans. (6)

$$\frac{3x^2 - 9x + 17}{x^2 + 3x + 10} = \frac{5x^2 - 7x + 19}{3x^2 + 5x + 12}$$

$$\frac{x^2 + 3x + 10 + 2x^2 - 12x + 7}{x^2 + 3x + 10} = \frac{3x^2 + 5x + 12 + 2x^2 - 12x + 7}{3x^2 + 5x + 12}$$

$$1 + \frac{2x^2 - 12x + 7}{x^2 + 3x + 10} = 1 + \frac{2x^2 - 12x + 7}{3x^2 + 5x + 12}$$

$$(2x^2 - 12x + 7) \left(\frac{1}{x^2 + 3x + 10} - \frac{1}{3x^2 + 5x + 10}\right) = 0$$

$$2x^{2} - 12x + 7 = 0 \text{ or } 3x^{2} + 5x + 12 = x^{2} + 3x + 10$$

$$X = \frac{12 \pm \sqrt{D}}{4}$$

$$2x^{2} + 2x + 2 = 0$$

$$X^{2} + x + 1 = 0$$

No solution.

. .