MATHEMATICS
 JEE-MAIN (July-Attempt)
 28 July (Shift-1) Paper Solution

SECTION - A

1. Let the solution curve of the differential equation $x d y=\left(\sqrt{x^{2}+y^{2}}+y\right) d x, \mathrm{x}>0$, intersect the line $x=1$ at $y=0$ and the line $x=2$ at $y=\alpha$. then the value of α is :
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) $\frac{-3}{2}$
(D) $\frac{5}{2}$

Sol. Official Ans. by NTA (B)
Motion Ans. (B)
$\mathrm{xdy}=\left(\sqrt{x^{2}+y^{2}}+y\right) \mathrm{dx}$
x dy $-\mathrm{ydx}=\sqrt{x^{2}+y^{2}} d x$
$\frac{x d y-y d x}{x^{2}}=\sqrt{1+\frac{y^{2}}{x^{2}}} \cdot \frac{d x}{x}$
$\frac{\mathrm{d}(\mathrm{y} / \mathrm{x})}{\sqrt{1+\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{2}}}=\frac{d x}{x}$
$\ln \left(\frac{y}{x}+\sqrt{\left(\frac{y}{x}\right)^{2}+1}\right)=\ln \mathrm{x}+\mathrm{R}$
$\frac{y+\sqrt{y^{2}+x^{2}}}{x}=c x$
$y+\sqrt{y^{2}+x^{2}}=c x^{2}$
$\mathrm{x}=1, \mathrm{y}=0 \quad \Rightarrow \quad 0+1=\mathrm{C} \quad \Rightarrow \quad \mathrm{C}=1$
Curve is $y+\sqrt{x^{2}+y^{2}}=x^{2}$
$\mathrm{x}=2, \mathrm{y}=\alpha$
$\alpha+\sqrt{4+\alpha^{2}}=4$
$4+\alpha^{2}=16+\alpha^{2}-8 \alpha$
$\alpha=\frac{3}{2}$
2. Considering only the principal values of the inverse trigonometric functions, the domain of the function $f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$ is :
(A) $\left(-\infty, \frac{1}{4}\right]$
(B) $\left[-\frac{1}{4}, \infty\right)$
(C) $\left(-\frac{1}{3}, \infty\right)$
(D) $\left(-\infty, \frac{1}{3}\right]$

Sol. Official Ans. by NTA (B)
Motion Ans. (B)
$\left|\frac{x^{2}+4 x+2}{x^{2}+3}\right| \leq 1$
$\Leftrightarrow\left(x^{2}-4 x+2\right)^{2} \leq\left(x^{2}+3\right)^{2}$
$\Leftrightarrow\left(x^{2}-4 \mathrm{x}+2\right)^{2}-\left(\mathrm{x}^{2}+3\right)^{2} \leq 0$
$\Leftrightarrow\left(2 x^{2}-4 x+5\right)(-4 x-1) \leq 0$
$\Leftrightarrow-4 \mathrm{x}-1 \leq 0 \rightarrow \mathrm{x} \geq-\frac{1}{4}$
3. Let the vectors $\vec{a}=(1+t) \hat{\imath}+(1-t) \hat{\jmath}+\hat{k}, \vec{b}=(1-t) \hat{\imath}+(1+t) \hat{\jmath}+2 \hat{k}$ and $\vec{c}=t \hat{\imath}-t \hat{\jmath}+\hat{k}$, $t \in R$ such that for $\alpha, \beta, \gamma \in R, \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0} \Rightarrow \alpha=\beta=\gamma=0$. Then, the set of all values of t is :
(A) a non - empty finite set
(B) equal to N
(C) equal to $\mathrm{R}-\{0\}$
(D) equal to R

Sol. Official Ans. by NTA (C)
Motion Ans. (C)
By its given condition
$: \vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors
$\Rightarrow[\vec{a} \vec{b} \vec{c}] \neq 0$
Now, $[\vec{a} \vec{b} \vec{c}]$
$=\left|\begin{array}{ccc}1+t & 1-t & 1 \\ 1-t & 1+t & 2 \\ t & -t & 1\end{array}\right|$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$
$=\left|\begin{array}{ccc}1+t & 2 & 1 \\ 1-t & 2 & 2 \\ t & 0 & 1\end{array}\right|$
$=2\left|\begin{array}{ccc}1+t & 1 & 1 \\ 1-t & 1 & 2 \\ t & 0 & 1\end{array}\right|$
$=2[(1+\mathrm{t})-(1-\mathrm{t})+\mathrm{t}]$
$=2[3 \mathrm{t}]=6 \mathrm{t}$
$[\vec{a} \vec{b} \vec{c}] \neq 0 \quad \Rightarrow \quad \mathrm{t} \neq 0$
4. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$ is equal to :
(A) 0
(B) 1
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$

Sol. Official Ans. By NTA (A)
Motion Ans. (A)
$\operatorname{Cos}^{-1} \mathrm{x}-2 \sin ^{-1} \mathrm{x}=\cos ^{-1} 2 \mathrm{x}$
$\operatorname{Cos}^{-1} x-2\left(\frac{\pi}{2}-\cos ^{-1} x\right)=\cos ^{-1} 2 x$
$\operatorname{Cos}^{-1} \mathrm{x}-\pi+2 \cos ^{-1} \mathrm{x}=\cos ^{-1} 2 \mathrm{x}$
$3 \operatorname{Cos}^{-1} \mathrm{x}=\pi+\cos ^{-1} 2 \mathrm{x}$
$\operatorname{Cos}\left(3 \cos ^{-1} x\right)=\cos \left(\pi+\cos ^{-1} 2 x\right)$
$4 x^{3}-3 x=-2 x$
$4 x^{3}=x \Rightarrow x=0, \pm \frac{1}{2}$
All satisfy the original equation
Sum $=-\frac{1}{2}$ to $+\frac{1}{2}=0$
5. Let the operations $*, \odot \in\{\Lambda, \mathrm{~V}\}$. If $(P * q) \odot(p \odot-q)$ is a tautology, then the ordered pair (*, $\odot)$
(A) (\wedge, V)
(B) (V, v)
(C) (\wedge, \wedge)
(D) (\wedge, V)

Sol. Official Ans. by NTA (B)

Motion Ans. (B)

Well check each option
For (A) $*=\vee$ of $\odot=\Lambda$
$(p \vee q) \vee(p \vee \sim q)$
$\equiv \mathrm{p} \vee(\mathrm{q} \wedge \sim \mathrm{q})$
$\equiv \mathrm{p} \vee$ (contradiction) $\equiv \mathrm{p}$
For B: $*=v, \odot=v$
$(p \vee q) \vee(p \vee \sim q) \equiv t$
using Venn diagrams

6. Let a vector \vec{a} has magnitude 9 , Let a vector \vec{b} be such that for every $(x, y) \in R \times R-\{(0,0)\}$, the vector $(x \vec{a}+y \vec{b})$ is perpendicular to the vector $(6 y \vec{a}-18 x \vec{b})$ then the value of $|\vec{a} \times \vec{b}|$ is equal to
(A) $9 \sqrt{3}$
(B) $27 \sqrt{3}$
(C) 9
(D) 81

Sol. Official Ans. By NTA (B)
Motion Ans. (B)
$|\vec{a}|=9 \&(\mathrm{x} \vec{a}+\mathrm{y} \vec{b}) \cdot(6 \mathrm{y} \vec{a}-18 \mathrm{x} \vec{b})=0$
$\Rightarrow 6 \mathrm{xy}|\vec{a}|^{2}-18 \mathrm{x}^{2}(\vec{a} \cdot \vec{b})+6 \mathrm{y}^{2}(\vec{a} \cdot \vec{b})-18 \mathrm{xy}|\vec{b}|=0$
$\Rightarrow 6 \mathrm{xy}\left(|\vec{a}|^{2}-3|\vec{b}|^{2}\right)+(\vec{a} \cdot \vec{b})\left(\mathrm{y}^{2}-3 \mathrm{x}^{2}\right)=0$
This should hold $\forall \mathrm{x}, \mathrm{y} \in \mathrm{R} \times \mathrm{R}$
$\therefore|\vec{a}|=3|\vec{b}|^{2} \&(\vec{a} \cdot \vec{b})=0$
Now $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2} \times|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
$=|\vec{a}|^{2} \cdot \frac{|\vec{a}|^{2}}{3} \|$
$\therefore|\vec{a} \times \vec{b}|=\frac{|\vec{a}|^{2}}{3}=\frac{81}{\sqrt{3}}=27 \sqrt{3}$
7. For $t \in(0,2 \pi)$, if ABC is an equilateral triangle with vertices A (sint, - cost), B (cost, $\sin t)$ and $\mathrm{C}(\mathrm{a}$, b) such that its orthocentre lies on a circle with centre $\left(1, \frac{1}{3}\right)$, then $\left(a^{2}-b^{2}\right)$ is equal to :
(A) $\frac{8}{3}$
(B) 8
(C) $\frac{77}{9}$
(D) $\frac{80}{9}$

Sol. Official Ans. by NTA (B)

Motion Ans. (B)
$\mathrm{s} \equiv \sin \mathrm{t}, \mathrm{c} \equiv \cos \mathrm{t}$
Let orthocenter be (h, k)
Since it is an equilateral triangle hence orthocenter coincides with centroid.
$\therefore \mathrm{a}+\mathrm{s}+\mathrm{c}=3 \mathrm{~h}, \mathrm{~b}+\mathrm{s}-\mathrm{c}=3 \mathrm{k}$
$\therefore(3 \mathrm{~h}-\mathrm{a})^{2}+(3 \mathrm{k}-\mathrm{b})^{2}=(\mathrm{s}+\mathrm{c})^{2}+(\mathrm{s}-\mathrm{c})^{2}=2\left(\mathrm{~s}^{2}+\mathrm{c}^{2}\right)=2$
$\therefore\left(h-\frac{a}{3}\right)^{2}+\left(k-\frac{b}{3}\right)^{2}=\frac{2}{9}$
Circle center at $\left(\frac{a}{3}, \frac{b}{3}\right)$
Gives, $\frac{\mathrm{a}}{3}=1, \frac{\mathrm{~b}}{3}=\frac{1}{3} \Rightarrow \mathrm{a}=3, \mathrm{~b}=1$
$\therefore \mathrm{a}^{2}-\mathrm{b}^{2}=8$
8. For $\alpha \in N$, consider a relation R on N given by $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): 3 \mathrm{x}+\alpha \mathrm{y}$ is a multiple of 7$\}$. The relation R is an equivalence relation if and only if :
(A) $\alpha=14$
(B) α is a multiple of 4
(C) 4 is the remainder when α is divided by 10
(D) 4 is the remainder when α is divided by 7

Sol. Official Ans. By NTA (D)

Motion Ans. (D)
For R to be reflective $\Rightarrow \mathrm{xRx}$
$\Rightarrow 3 \mathrm{x}+\alpha \mathrm{x}=7 \mathrm{x} \quad \Rightarrow \quad(3+\alpha) \mathrm{x}=7 \mathrm{x}$
$\Rightarrow 3+\alpha=7 \lambda \quad \Rightarrow \quad \alpha=7 \lambda-3=7 \mathrm{~N}+4, \mathrm{~K}, \lambda, \mathrm{~N} \in \mathrm{I}$
\therefore when α divided by 7 , remainder is 4 .
R to be symmetric $x R y \Rightarrow y R x$
$3 x+\alpha y=7 N_{1}, 3 y+\alpha x=7 N_{2}$
$\Rightarrow(3+\alpha)(\mathrm{x}+\mathrm{y})=7\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)=7 \mathrm{~N}_{3}$
Which holds when $3+\alpha$ is multiple of 7
$\therefore \alpha=7 \mathrm{~N}+4$ (as did earlier)
R to be transitive
$x R y \& y R z \Rightarrow x R z$.
$3 x+\alpha y=7 N_{1} \& 3 y+\alpha z=7 N_{2} \quad$ and
$3 \mathrm{x}+\alpha \mathrm{z}=7 \mathrm{~N}_{3}$
$\therefore 3 \mathrm{x}+7 \mathrm{~N}_{2}-3 \mathrm{y}=7 \mathrm{~N}_{3}$
$\therefore 7 N_{1}-\alpha y+7 N_{2}-3 y=7 N_{3}$
$\therefore 7\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)-(3+\alpha) \mathrm{y}=7 \mathrm{~N}_{3}$
$\therefore(3+\alpha) y=7 N$
Which is true again when $3+\alpha$ divisible by 7, i.e. when α divided by 7 , remainder is 4 .
9. Out of 60% female and 40% male candidates appearing in an exam, 60% candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. the probability, that the chosen candidate is a female, is :
(A) $\frac{3}{4}$
(B) $\frac{11}{16}$
(C) $\frac{23}{32}$
(D) $\frac{13}{16}$

Sol. Official Ans. By NTA (A)

Motion Ans. (Bonus)

Probability that chosen candidate is female $=\frac{40}{60}=\frac{2}{3}$
10. If $\mathrm{y}=\mathrm{y}(\mathrm{x}), x \in\left(0, \frac{\pi}{2}\right)$ be the solution curve of the differential equation $\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+\right.$ $2 \sin 4 x) y=2 e^{-4 x}(2 \sin 2 x+\cos 2 x)$, with $y(\pi / 4)=e^{-\pi}$, then $y(\pi / 6)$ is equal to
(A) $\frac{2}{\sqrt{3}} e^{-2 \pi / 3}$
(B) $\frac{2}{\sqrt{3}} e^{2 \pi / 3}$
(C) $\frac{1}{\sqrt{3}} e^{-2 \pi / 3}$
(D) $\frac{1}{\sqrt{3}} e^{2 \pi / 3}$

Sol. Official Ans. by NTA (A)
Motion Ans. (A)
Given differential equation can be re-written as $\frac{\mathrm{dy}}{\mathrm{dx}}+(8+4 \cot 2 \mathrm{x}) \mathrm{y}=\frac{2 e^{-4 x}}{\sin ^{2} 2 x}(2 \sin \mathrm{x}+\cos 2 \mathrm{x})$
Which is a linear diff. equatio.
I.f. $=e^{\int(8+4 \cot 2 x) d x}=e^{8 x+2 \ln (\sin 2 x)}$
$=\mathrm{e}^{8 \mathrm{x}} \cdot \sin ^{2} 2 \mathrm{x}$
\therefore Solution is
$\mathrm{y}\left(\mathrm{e}^{8 \mathrm{x}} \cdot \sin ^{2} 2 \mathrm{x}\right)=\int 2 e^{4 x}(2 \sin 2 \mathrm{x}+\cos 2 \mathrm{x}) \mathrm{dx}+\mathrm{C}$
$=e^{4 x} \cdot \sin 2 x+C$
Given $y\left(\frac{\pi}{4}\right)=\mathrm{e}^{-\pi} \Rightarrow \mathrm{C}=0$
$\therefore \mathrm{y}=\frac{\mathrm{e}^{-4 \mathrm{x}}}{\sin 2 \mathrm{x}}$
$\therefore y\left(\frac{\pi}{6}\right)=\frac{e^{-4 \frac{\pi}{6}}}{\sin \left(2 \cdot \frac{\pi}{6}\right)}=\frac{2}{\sqrt{3}} e^{-\frac{2 \pi}{3}}$
11. If the tangents drawn at the points P and Q on the parabola $y^{2}=2 x-3$ intersect at the point $R(0,1)$, then the orthocentre of the triangle $P Q R$ is :
(A) $(0,1)$
(B) $(2,-1)$
(C) $(6,3)$
(D) $(2,1)$

Sol. Official Ans. by NTA (B)

Motion Ans. (B)
$\mathrm{y}^{2}=2 \mathrm{x}-3$
Equation of chord of contact
PQ:T=0
$\mathrm{y} \times 1=(\mathrm{x}+0)-3$
$y=x-3$

from (1) and (2)
$(x-3)^{2}=2 x-3$
$x^{2}-8 x+12=0$
$(x-2)(x-6)=0$
$x=2$ or 6
$\Rightarrow \mathrm{y}=-1$ or 3
$\mathrm{m}_{\mathrm{PQ}}=\frac{4}{4}=1$
$\mathrm{m}_{\mathrm{QR}}=\frac{2}{6}=\frac{1}{3}$
$\mathrm{m}_{\mathrm{PR}}=\frac{2}{-2}=-1$

$\mathrm{mPQ}_{\mathrm{P}} \times \mathrm{mPR}=-1 \quad \Rightarrow \quad P Q \perp P R$
Orthocentre $=P(2,-1)$
12. Let C be the centre of the circle $x^{2}+y^{2}-x+2 y=\frac{11}{4}$ and P be a point on the circle. A line passes through the point C , makes an angle of $\frac{\pi}{4}$ with the line CP and intersects the circle at the points Q and R. then the area of the triangle $P Q R$ (in unit ${ }^{2}$) is :
(A) 2
(B) $2 \sqrt{2}$
(C) $8 \sin \left(\frac{\pi}{8}\right)$
(D) $8 \cos \left(\frac{\pi}{8}\right)$

Sol. Official Ans. by NTA (B)
Motion Ans. (B)
$x^{2}+y^{2}-x+2 y=\frac{11}{4}$
$\left(x-\frac{1}{2}\right)^{2}+(y+1)^{2}=(2)^{2}$
Or $\triangle P Q R$
$\mathrm{PR}=\mathrm{QR} \sin 22 \frac{1}{2}$

$=4 \sin \frac{\pi}{8}$
$\mathrm{PQ}=\mathrm{QR} \cos 22 \frac{1}{2}$
$=4 \cos \frac{\pi}{8}$
As $\triangle \mathrm{PQR}=\frac{1}{2} \mathrm{PR} \times \mathrm{PQ}$
$=\frac{1}{2}\left(4 \sin \frac{\pi}{8}\right)\left(4 \cos \frac{\pi}{8}\right)$
$=4 \sin \frac{\pi}{4}=\frac{4}{\sqrt{2}}=2 \sqrt{2}$
13. The remainder when $7^{2022}+3^{2022}$ is divided by 5 is :
(A) 0
(B) 2
(C) 3
(D) 4

Sol. Official Ans. By NTA (C)
Motion Ans. (C)
$7^{2022}+3^{2022}$
$=(49)^{1011}+(9)^{1011}$
$=(50-1)^{1011}+(10-1)^{1011}$
$=5 \lambda-1+5 K-1$
$=5 \mathrm{~m}-2$
Remainder $=5-2=3$
14. Let the matrix $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ and the matrix $B_{0}=A^{49}+2 A^{98}$. If $B_{\mathrm{n}}=\operatorname{Adj}\left(\mathrm{B}_{\mathrm{n}-1}\right)$ for all $\mathrm{n} \geqslant 1$, then $\operatorname{det}\left(\mathrm{B}_{4}\right)$ is equal to :
(A) 3^{28}
(B) 2^{30}
(C) 3^{32}
(D) 3^{36}

Sol. Official Ans. By NTA (C)

Motion Ans. (C)
$\mathrm{A}^{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

$$
=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

$\mathrm{C}_{1} \leftrightarrow \mathrm{C}_{3}$
$-\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
$B_{0}=A^{49}+2 A^{98}$
$=\mathrm{A}+2 \mathrm{I}$
$\mathrm{B}_{\mathrm{n}}=\mathrm{Adj} .\left(\mathrm{Bn}_{\mathrm{n}}-1\right)$
$B_{4}=\operatorname{Adj}\left(\operatorname{Adj}\left(\operatorname{Adj}\left(\operatorname{Adj} B_{0}\right)\right)\right)$
$=\left|B_{0}\right|^{(n-1)^{4}}$
$=\left|B_{0}\right|^{16}$
$\mathrm{B}_{0}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]+\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
$\left.=\begin{array}{rll}2 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]$
$=2(4-0)-1(0-1)$
= 9
B4 $(9)^{16}=(3)^{32}$
15. Let $S_{1}=\left\{z_{1} \in C:\left|z_{1}-3\right|=\frac{1}{2}\right\}$ and $S_{2}=\left\{z_{2} \in C:\left|z_{2}-\left|z_{2}+1\right|\right|=\left|z_{2}+\left|z_{2}-1\right|\right|\right\}$. then for $z_{1} \in$ S_{1} and $z_{2} \in S_{2}$, the least value of $\left|\mathrm{z}_{2}-\mathrm{z}_{1}\right|$ is:
(A) 0
(B) $\frac{1}{2}$
(C) $\frac{3}{2}$
(D) $\frac{5}{2}$

Sol. Official Ans. By NTA (C)
Motion Ans. (C)
$\left|\mathrm{z}_{2}+\left|\mathrm{z}_{2}-1\right|^{2}=\left|\mathrm{z}_{2}-\left|\mathrm{z}_{2}+1\right|\right|^{2}\right.$
$\Rightarrow\left(\mathrm{z}_{2}+|\mathrm{z} 2-1|\right)\left(\overline{z_{2}}+|\mathrm{z} 2-1|\right)=\left(\mathrm{z} 2-\left|\mathrm{z}_{2}+1\right|\right)\left(\overline{z_{2}}-|\mathrm{z} 2+1|\right)$
$\Rightarrow \mathrm{z}_{2}\left|\overline{z_{2}}+\left|\mathrm{z}_{2}-1\right|-\mathrm{z}_{2}\left(\overline{z_{2}}-\left|\mathrm{z}_{2}+1\right|\right)+\overline{z_{2}}\left(\left|\mathrm{z}_{2}-1\right|+\left|\mathrm{z}_{2}+1\right|\right)\right.$
$=\left|\mathrm{z}_{2}+1\right|^{2}-\left|\mathrm{z}_{2}-1\right|^{2}$
$\Rightarrow\left(\mathrm{z}_{2}+\overline{z_{2}}\right)(|\mathrm{z} 2-1|)+\left(\left|\mathrm{z}_{2}+1\right|\right)=2\left(\mathrm{z}_{2}+\overline{z_{2}}\right)$
$\therefore \mathrm{z}_{2}+\overline{z_{2}}=0$ or $\left|\mathrm{z}_{2}-1\right|+\left|\mathrm{z}_{2}+1\right|-2=0$
\therefore zz lie on imaginary axis. Or on real axis with in $[-1,1]$
Also $\left|\mathrm{z}_{1}-3\right|=\frac{1}{2}$ lie on circle having center $(3,0)$ and radius $\frac{1}{2}$.

Clearly $\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|_{\text {min }}=\frac{5}{2}-1=\frac{3}{2}$
16. The foot of the perpendicular from a point on the circle $x^{2}+y^{2}=1, z=0$ to the plane $2 x+3 y+z$ $=6$ lies on which one of the following curves ?
(A) $(6 x+5 y-12)^{2}+4(3 x+7 y-8)^{2}=1, z=6-2 x-3 y$
(B) $(5 x+6 y-12)^{2}+4(3 x+5 y-9)^{2}=1, z=6-2 x-3 y$
(C) $(6 x+5 y-14)^{2}+9(3 x+5 y-7)^{2}=1, z=6-2 x-3 y$
(D) $(5 x+6 y-14)^{2}+9(3 x+7 y-8)^{2}=1, z=6-2 x-3 y$

Sol. Official Ans. By NTA (B)
Motion Ans. (B)

$\frac{\mathrm{h}-\cos \theta}{2}=\frac{\mathrm{k}-\sin \theta}{3}=\frac{w-0}{1}$
$=\frac{-1(2 \cos \theta+3 \sin \theta-6)}{14}$
$h=\frac{-2(2 \cos \theta+3 \sin \theta-6)}{14}+\cos \theta$
$=\frac{10 \cos \theta-6 \sin \theta+12}{14}$
$\mathrm{k}=\frac{5 \sin \theta-6 \cos \theta+18}{14}$
Elementry $\sin \theta$ and $\cos \theta$
$(5 h+6 k-12)^{2}+4(3 h+5 k-9)^{2}=1$
17. If the minimum value of $f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0$, is 14 , then the value of α is equal to :
(A) 32
(B) 64
(C) 128
(D) 256

Sol. Official Ans. By NTA (C)
Motion Ans. (C)
$\frac{x^{2}}{2}+\frac{x^{2}}{2}+\frac{x^{2}}{2}+\frac{x^{2}}{2}+\frac{x^{2}}{2}+\frac{\alpha}{2 \mathrm{x}^{5}}+\frac{\alpha}{2 \mathrm{x}^{5}}$
$\geq 7\left(\frac{\alpha^{2}}{2^{7}}\right)^{\frac{1}{7}}$
$\frac{7 \cdot(\alpha)^{2 / 7}}{2}=14$
$\left(\alpha^{2}\right)^{1 / 7}=2^{2}$
$\alpha=\left(2^{2}\right)^{7 / 2}=2^{7}$
$\alpha=128$
18. Let α, β and γ be three positive real numbers, let $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be such that $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{R}$. If a1, a2, a3,...an be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to :
(A) 0
(B) 3
(C) 9
(D) 27

Sol. Official Ans. By NTA (A)
Motion Ans. (A)
Consider a case when $\alpha=\beta=0$ then
$\mathrm{f}(\mathrm{x})=\gamma \mathrm{x} \quad \mathrm{g}(\mathrm{x})=\frac{\mathrm{x}}{\gamma}$
$\frac{1}{\mathrm{n}} \sum_{i=1}^{n} f\left(a_{i}\right) \Rightarrow \frac{1}{\mathrm{n}}\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\mathrm{n}}\right)=0$
$\Rightarrow \mathrm{f}(\mathrm{g}(0)) \quad \Rightarrow \mathrm{f}(0)=0$
19. Consider the sequence $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$. such that $\mathrm{a}_{1}=1, \mathrm{a}_{2}=2$ and $a_{n+2}=\frac{2}{a_{n+1}}+a_{n}$ for $\mathrm{n}=1,2,3, \ldots$, if $\left(\frac{a_{1}+\frac{1}{a_{2}}}{a_{3}}\right)\left(\frac{a_{2}+\frac{1}{a_{3}}}{a_{4}}\right)\left(\frac{a_{3}+\frac{1}{a_{4}}}{a_{5}}\right) \ldots\left(\frac{a_{30}+\frac{1}{a_{31}}}{a_{32}}\right)=2^{\alpha}\left({ }^{61} C_{31}\right)$, then α is equal to
(A) -30
(B) -31
(C) -60
(D) -61

Sol. Official Ans. By NTA (C)

Motion Ans. (C)

$a_{n+2} a_{n+1}-a_{n+1} \cdot a_{n}=2$
series will satisfy
$a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}, a_{4} a_{5}$
1.2, 2.2, 2.3, 2.4
$\frac{a_{n}+\frac{1}{a_{n+1}}}{a_{n+2}}=\frac{a_{n+2}-\frac{1}{a_{n+1}}}{a_{n+2}}$
$=1-\frac{1}{a_{n+1} a_{n+2}}$
$=1-\frac{1}{2(r+1)}$
$=\frac{2 r+1}{2(r+1)}$
Now proof is given by
$=\prod_{r=1}^{30} \frac{(2 r+1)}{2(r+1)}$
$=\frac{(1 \cdot 3 \cdot 5 \cdot \ldots \ldots \ldots .61)}{\underline{31} \cdot 2^{30}} \times \frac{2^{30} \times \underline{30}}{2^{30} \times \underline{\boxed{30}}}$
$=\frac{\underline{61}}{2^{60} \underline{31} \cdot \underline{30}}$
$\alpha=-60$
20. The minimum value of the twice differentiable function $(x)=\int_{0}^{x} e^{x-t} f^{\prime}(t) d t-\left(x^{2}-x+1\right) e^{x}$, $x \in R$, is
(A) $-\frac{2}{\sqrt{e}}$
(B) $-2 \sqrt{e}$
(C) $-\sqrt{e}$
(D) $\frac{2}{\sqrt{e}}$

Sol. Official Ans. By NTA (A)
Motion Ans. (A)
$\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \cdot \int_{0}^{x} \frac{f^{\prime}(t)}{e^{t}} d t$
$f^{\prime}(x)=e^{x} \cdot \int_{0}^{x} \frac{f^{\prime}(t)}{e^{t}} d t+e^{x} \cdot \frac{f^{\prime}(x)}{e^{x}}-\left[(2 x-1) \cdot e^{x}+\left(x^{2}-x+1\right) \cdot e^{x}\right]$
$\int_{0}^{x} \frac{f^{\prime}(t)}{e^{t}} d t=\mathrm{x}^{2}+\mathrm{x}$
$\frac{f^{\prime}(x)}{e^{x}}=2 x+1$
$f^{\prime}(x)=(2 x+1) \cdot e^{x}$
$\mathrm{f}^{\prime}(\mathrm{x})=0 \quad \Rightarrow \quad \mathrm{x}=-\frac{1}{2}$
$f(x)=(2 x+1) \cdot e^{x}-2 e^{x}+C$
$f(0)=-1$
$-1=1-2+C$
$C=0$
$f(x)=e^{x}(2 x-1)$
$\mathrm{f}\left(-\frac{1}{2}\right)=\frac{-2}{\sqrt{e}}$
21. Let S be the set of all passwords which are six to eight characters long, where each character is either an alphabet from $\{A, B, C, D, E\}$ or a number from $\{1,2,3,4,5\}$ with the repletion of characters allowed. if the number of passwords in S whose at least one character is a number from $\{1,2,3,4,5\}$ is $\alpha \times 5^{6}$, then α is equal to :
Sol. Official Ans. By NTA (7073)
Motion Ans. (7073)
Required no. $=$ Total - no character from $\{1,2,3,4,5\}$
$=\left(10^{6}-5^{6}\right)+\left(10^{7}-5^{7}\right)+\left(10^{8}-5^{8}\right)$
$=10^{6}(1+10+100)-5^{6}(1+5+25)$
$=10^{6} \times 111-5^{6} \times 31$
$=26 \times 5^{6} \times 111-5^{6} \times 31$
$=5^{6}\left(2^{6} \times 111-31\right)$
$=5^{6} \times 7073$
$\therefore \alpha=7073$
22. Let $\mathrm{P}(-2,-1,1)$ and $Q\left(\frac{56}{11}, \frac{43}{17}, \frac{111}{17}\right)$ be the vertices of the rhombus PRQS. if the direction ratios of the diagonal RS are $\alpha,-1, \beta$ where both α and β are integers of minimum absolute values, then $\alpha^{2}+\beta^{2}$ is equal to :
Sol. Official Ans. By NTA (450)
Motion Ans. (450)
DR's of RS $\equiv(\alpha,-1, \beta)$
DR of $\mathrm{PQ} \equiv\left(\frac{56}{17}+2, \frac{43}{17}+1, \frac{111}{17}-1\right)$
$\equiv\left(\frac{90}{17}, \frac{60}{17}, \frac{94}{17}\right)$
$\frac{90}{17} \alpha+\frac{60}{17}(-1)+\frac{94}{17} \beta=0$
$90 \alpha+94 \beta=60$
$\beta=\frac{60-90 \alpha}{94}$
$\beta=\frac{30(2-3 \alpha)}{94}$
$\beta=-30 \frac{(3 \alpha-2)}{94}$
$\beta=\frac{-15}{47}(3 \alpha-2)$
$\Rightarrow \frac{\beta}{-15}=\frac{3 \alpha-2}{47}$
$\Rightarrow \beta=-15, \alpha=-15$
$\alpha^{2}+\beta^{2}=225+225$
$=450$
23. Let $\mathrm{f}:[0,1] \rightarrow R$ be a twice differentiable function in $(0,1)$ such that $f(0)=3$ and $f(1)=5$. if the line $y=2 x+3$ intersect the graph of f at only two distinct point in $(0,1)$, then the least number of points $x \in(0,1)$, at which $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$, is :
Sol. Official Ans. By NTA (2)
Motion Ans. (2)

$\mathrm{f}^{\prime}(\mathrm{a})=\mathrm{f}^{\prime}(\mathrm{b})=\mathrm{f}^{\prime}(\mathrm{c})=2$
$\Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{x})$ is zero
for at least $\mathrm{x}_{1} \in(\mathrm{a}, \mathrm{b}) \& \mathrm{x}_{2} \in(\mathrm{~b}, \mathrm{c})$
24. If $\int_{0}^{\sqrt{3}} \frac{15 x^{3}}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} d x=\alpha \sqrt{2}+\beta \sqrt{3}$, where α, β are integers, then $\alpha+\beta$ is equal to

Sol. Official Ans. By NTA (10)

Motion (10)

Put $1+\mathrm{x}^{2}=\mathrm{t}^{2}$
$2 x d x=2 t d t$
$\mathrm{xdx}=\mathrm{tdt}$
$\therefore \int_{1}^{2} \frac{15\left(t^{2}-1\right) t d t}{\sqrt{t^{2}+t^{3}}}$
$15 \int_{1}^{2} \frac{t\left(t^{2}-1\right)}{t \sqrt{1+t}} d t$
Put $1+t=u^{2}$
$d t=2 u d u$
$15 \int_{\sqrt{2}}^{\sqrt{3}} \frac{\left(u^{2}-1\right)^{2}}{u} \times 2 \mathrm{udu}$
$30 \int_{\sqrt{2}}^{\sqrt{3}}\left(u^{4}-2 u^{2}\right) d u$
$30\left(\frac{u^{5}}{5}-\frac{2 u^{3}}{3}\right) \sqrt{\sqrt{3}}$
$30\left[\frac{1}{5}\left((\sqrt{3})^{5}-(\sqrt{2})^{5}\right)-\frac{2}{3}\left((\sqrt{3})^{3}-(\sqrt{2})^{3}\right)\right] 3$
$30\left[\frac{1}{5}(9 \sqrt{3}-4 \sqrt{2})-\frac{2}{3}(3 \sqrt{3}-2 \sqrt{2})\right]$
$30\left[\frac{-1}{5} \times \sqrt{3}+\frac{8}{15} \sqrt{2}\right]$
$-6 \sqrt{3}+16 \sqrt{2}=\alpha \sqrt{2}+\beta \sqrt{3}$
$\alpha=16, \beta=-6$
$\therefore \alpha+\beta=10$
25. Let $A=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]$ and $B=\left[\begin{array}{ll}\beta & 1 \\ 1 & 0\end{array}\right], \alpha, \beta \in R$. Let α_{1} be the value of α which satisfies $(A+B)^{2}=$ $A^{2}+\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ and α_{2} be the value of α which satisfies $(\mathrm{A}+\mathrm{B})^{2}=\mathrm{B}^{2}$. then $\left|\alpha_{1}-\alpha_{2}\right|$ is equal to :

Sol. Official Ans. By NTA (2)

Motion Ans. (2)

$$
\left.\begin{array}{l}
\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}
\beta+1 & 0 \\
3 & \alpha
\end{array}\right] \\
(\mathrm{A}+\mathrm{B})^{2}=\left[\begin{array}{cc}
\beta+1 & 0 \\
3 & \alpha
\end{array}\right]\left[\begin{array}{cc}
\beta+1 & 0 \\
3 & \alpha
\end{array}\right] \\
=\left[\begin{array}{cc}
(\beta+1)^{2} & 0 \\
3(\beta+1)+3 \alpha & \alpha^{2}
\end{array}\right] \\
\mathrm{A}^{2}=\left[\begin{array}{cc}
1 & -1 \\
2 & \alpha
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
2 & \alpha
\end{array}\right] \\
=\left[\begin{array}{cc}
-1 & -1-\alpha \\
2+2 \alpha & \alpha^{2}-2
\end{array}\right] \\
\therefore\left[\begin{array}{cc}
1 & -\alpha+1 \\
2 \alpha+4 & \alpha^{2}
\end{array}\right]=\left[\begin{array}{cc}
(\beta+1)^{2} & 0 \\
3(\alpha+\beta+1) & \alpha^{2}
\end{array}\right] \\
\alpha=1=\alpha_{1}
\end{array}\right] \begin{array}{ll}
\beta=\left[\begin{array}{ll}
\beta & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\beta & 1 \\
1 & 0
\end{array}\right]
\end{array}
$$

$=\left[\begin{array}{cc}\beta^{2}+1 & \beta \\ \beta & 1\end{array}\right]=\left[\begin{array}{cc}\left(\beta^{2}+1\right)^{2} & 0 \\ 3(\beta+1)+3 \alpha & \alpha^{2}\end{array}\right]$
$\therefore \beta=0, \alpha=-1=\alpha_{2}$
$\left|\alpha_{1}-\alpha_{2}\right|=|1-(-1)|=2$
26. For $p, q \in R$ consider the real valued function $\mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{p})^{2}-\mathrm{q}, x \in R$ and $\mathrm{q}>0$. let a_{1}, a_{2}, a_{3} and a_{4} be in an arithmetic progression with mean p and positive common difference. if $\left|\mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right)\right|=$ 500 for all $\mathrm{I}=1,2,3,4$, then the absolute difference between the roots of $f(x)=0$ is

Sol. Official Ans. NTA (50)
Motion Ans. (50)
$\mathrm{f}(\mathrm{x})=0 \Rightarrow(\mathrm{x}-\mathrm{p})^{2}-\mathrm{q}=0$.
Roots are $p+\sqrt{q}, p-\sqrt{q}$ absolute difference between roots is $2 \sqrt{q}$.
Now, $\left|f\left(\mathrm{a}_{\mathrm{i}}\right)\right|=500$
Let $a_{1}, a_{2}, a_{3}, a_{4}$ are $a, a+d, a+2 d, a+3 d$
$\left|f\left(\mathrm{a}_{4}\right)\right|=500$
$\left|\left(\mathrm{a}_{1}-\mathrm{p}\right)^{2}-\mathrm{q}\right|=500$
$\Rightarrow \frac{9}{4} \mathrm{~d}^{2}-\mathrm{q}=500$
And $\left|f\left(\mathrm{a}_{1}\right)\right|^{2}=\left|\mathrm{f}\left(\mathrm{a}_{2}\right)\right|^{2}$
$\left(\left(a_{1}-p\right)^{2}-q\right)^{2}=\left(\left(a_{2}-p\right)^{2}-q\right)^{2}$
$\Rightarrow\left(\left(\mathrm{a}_{1}-\mathrm{p}\right)^{2}-\left(\mathrm{a}_{2}-\mathrm{p}\right)^{2}\right)\left(\left(\mathrm{a}_{1}-\mathrm{p}\right)^{2}-\mathrm{q}+\left(\mathrm{a}_{2}-\mathrm{p}\right)^{2}-\mathrm{q}\right)=0$
$\Rightarrow \frac{9}{4} \mathrm{~d}^{2}-\mathrm{q}+\frac{d^{2}}{2}-\mathrm{q}=0$
$2 \mathrm{q}=\frac{10 d^{2}}{4} \Rightarrow \mathrm{q}=\frac{5 d^{2}}{4}$
$\Rightarrow \mathrm{d}^{2}=\frac{4 \mathrm{q}}{5}$
From equation (1) $\frac{9}{4} \cdot \frac{4 \cdot q}{5}-q=500$
$\frac{4 q}{5}=500$
And $2 \sqrt{\mathrm{q}}=2 \times \frac{50}{2}=50$
27. For the hyperbola $\mathrm{H}: \mathrm{x}^{2}-\mathrm{y}^{2}=1$ and the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{a}>\mathrm{b}>0$, let the
(1) eccentricity of E be reciprocal of the eccentricity of H, and
(2) the line $y=\sqrt{\frac{5}{2}} x+k$ be a common tangent of E and H . then $4\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$ is equal to :

Sol. Official Ans. By NTA (3)

Motion Ans. (3)
$\mathrm{e}_{\mathrm{E}}=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}, \mathrm{e}_{\mathrm{H}}=\sqrt{2}$
$\Rightarrow \mathrm{e}_{\mathrm{E}}=\frac{1}{\mathrm{e}_{\mathrm{H}}}$
$\Rightarrow \frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=\frac{1}{2}$
$2 \mathrm{a}^{2}-2 \mathrm{~b}^{2}=\mathrm{a}^{2}$
$\mathrm{a}^{2}=2 \mathrm{~b}^{2}$
And $y=\sqrt{\frac{5}{2} x}+K$ is tangent to ellipse then
$\mathrm{K}^{2}=\mathrm{a}^{2} \times \frac{5}{2}+\mathrm{b}^{2}=\frac{3}{2}$
$6 \mathrm{~b}^{2}=\frac{3}{2} \Rightarrow \mathrm{~b}^{2}=\frac{1}{4}$ and $\mathrm{a}^{2}=\frac{1}{2}$
$\therefore 4 \cdot\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=3$
28. let $x_{1}, x_{2}, x_{3}, \ldots . . ., x_{20}$ be in geometric progression with $x_{1}=3$ and the common ratio $1 / 2$. A new data is constructed replacing each x_{i} by $\left(x_{i}-i\right)^{2}$. if \bar{x} is the mean of new data. then the greatest integer less than or equal to \bar{x} is
Sol. Official Ans. By NTA (142)
Motion Ans. (142)
$\sum x_{0}^{1}=\frac{3\left(1-\left(\frac{1}{2}\right)\right)^{20}}{1-\frac{1}{2}}=6\left(1-\frac{1}{2^{20}}\right)$
$=\sum_{i=1}^{20}\left(x_{i}-i\right)^{2}$
$=\sum_{i=1}^{20}\left(x_{i}\right)^{2}+(i)^{2}-2 x_{i} i$

Now $\sum_{i=1}^{20}\left(x_{i}\right)^{2}=\frac{9\left(1-\left(\frac{1}{4}\right)\right)^{20}}{1-\frac{1}{4}}=12\left(1-\frac{1}{2^{40}}\right)$
$\sum_{i=1}^{20} i^{2}=\frac{1}{6} \times 20 \times 21 \times 41=2870$
$\sum_{i=1}^{20} x_{i} \cdot \mathrm{i}=\mathrm{S}=3+2.3 \frac{1}{2}+3.3 \frac{1}{2^{2}}+4.3 \frac{1}{2^{3}}+\ldots \ldots$. AGP
$=6\left(2-\frac{22}{2^{20}}\right)$
$\bar{x}=\frac{12-\frac{12}{2^{40}}+2870-12\left(2-\frac{22}{2^{20}}\right)}{20}$
$\bar{x}=\frac{2858}{20}+\left(\frac{-12}{2^{40}}+\frac{22}{2^{20}}\right) \times \frac{1}{20}$
$[\bar{x}]=142$
29. $\lim _{x \rightarrow 0}\left(\frac{(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)^{\frac{100}{x}}$ is equal to :

Sol. Official Ans. By NTA (1)
Motion Ans. (1)
$\lim _{x \rightarrow 0}\left(\frac{(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)^{\frac{100}{x}}$
From 1^{∞}
$=e^{\lim _{x \rightarrow 0}\left[\left(\frac{(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)-1\right] \times \frac{100}{x}}$
$=e^{\lim _{x \rightarrow 0}\left[\frac{100}{x}\left(\frac{\left.(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)-\left((x+2)^{3}+2(x+2)^{3}+3 \sin (x+2)\right)\right)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)\right]}$
$=e^{\frac{100}{16+3 \sin 2} \lim _{x \rightarrow 0} \frac{3(x+2 \cos x)^{2} \times(1+2 \sin x)-3(x+2)^{2}-4(x+2 \cos x)}{x(1-2 \sin x)-4(x+2)+3 \cos (x+2 \cos x) \times(1-2 \sin x)-3 \cos (x+2)}}$
$=e^{\frac{100}{16+3 \sin 2}\left(\frac{12-3(4)+8 \times 1-8+3 \cos 2-3 \cos 2}{1}\right)}$
Using L'H rule;
$=\mathrm{e}^{0}=1$
30. The sum of all real values of x for which $\frac{3 x^{2}-9 x+17}{x^{2}+3 x+10}=\frac{5 x^{2}-7 x+19}{3 x^{2}+5 x+12}$ is equal to :

Sol. Official Ans. By NTA (6)

Motion Ans. (6)
$\frac{3 x^{2}-9 x+17}{x^{2}+3 x+10}=\frac{5 x^{2}-7 x+19}{3 x^{2}+5 x+12}$
$\frac{x^{2}+3 x+10+2 x^{2}-12 x+7}{x^{2}+3 x+10}=\frac{3 x^{2}+5 x+12+2 x^{2}-12 x+7}{3 x^{2}+5 x+12}$
$1+\frac{2 x^{2}-12 x+7}{x^{2}+3 x+10}=1+\frac{2 x^{2}-12 x+7}{3 x^{2}+5 x+12}$
$\left(2 \mathrm{x}^{2}-12 \mathrm{x}+7\right)\left(\frac{1}{x^{2}+3 x+10}-\frac{1}{3 x^{2}+5 x+10}\right)=0$
$2 \mathrm{x}^{2}-12 \mathrm{x}+7=0$ or $3 \mathrm{x}^{2}+5 \mathrm{x}+12=\mathrm{x}^{2}+3 \mathrm{x}+10$
$\mathrm{X}=\frac{12 \pm \sqrt{D}}{4}$

$$
2 x^{2}+2 x+2=0
$$

$$
\mathrm{X}^{2}+\mathrm{x}+1=0
$$

Sum of roots $=6 \quad$ No solution.

