CHEMISTRY
 JEE-MAIN (July-Attempt) 27 July
 (Shift-1) Paper

SECTION -A

1. Which one of the following statements is NOT correct?
(1) The dissolved oxygen concentration below 6 ppm inhibits fish growth
(2) Eutrophication indicates that water body is polluted
(3) Eutrophication leads to increase in the oxygen level in water
(4) Eutrophication leads to anaerobic conditions

Sol. (3)

Eutrophication leads to decrease in oxygen level of water.
$3^{\text {rd }}$ statement is incorrect
2.

A

 $\mathrm{HC} \equiv \stackrel{\oplus}{\mathrm{C}}$

B
C
D
The correct order of stability of given carbocation is :
(1) $C>A>D>B$
(2) $D>B>C>A$
(3) $A>C>B>D$
(4) D $>$ B $>$ A $>$ C

Sol. (3)

3. Given below are two statements: One is labelled as Assertion \mathbf{A} and the other is labelled as Reason R.
Assertion A:Lithium halides are some what covalent in nature.
Reason R: Lithium possess high polarization capability.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(2) \mathbf{A} is true but \mathbf{R} is false
(3) \mathbf{A} is false but \mathbf{R} is true
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}

Sol. (4)
Lithium due to small size has very high polarization capability and thus increases covalent nature in Halides.
4.

Consider the above reaction and identify the product P :
(1)

(2)

(3)

(4)

Sol. (3)

(Anti - markownikov addition)
5. The statement that is INCORRECT about Ellingham diagram is :
(1) Provides idea about the reaction rate.
(2) provides idea about free energy change.
(3) Provide idea about reduction of metal oxide.
(4) Provides idea about changes in the phase during the reaction.

Sol. (1)
Ellingham diagram is a plot between $\Delta \mathrm{G}^{0}$ and T and does not give any information regarding rate of reaction
6. For a reaction of order n, the unit of the rate constant is :
(1) $\mathrm{mol}^{1-n} \mathrm{~L}^{1-n} \mathrm{~s}^{-1}$
(2) $\mathrm{mol}^{1-\mathrm{n}} \mathrm{L}^{\mathrm{n}-1} \mathrm{~s}^{-1}$
(3) $\mathrm{mol}^{1-n} \mathrm{~L}^{1-n} \mathrm{~s}$
(4) $\mathrm{mol}^{1-n} \mathrm{~L}^{2 n} \mathrm{~s}^{-1}$

Sol. (2)
Rate $=k[A]^{n}$
comparing units
$\frac{(\mathrm{mol} / \ell)}{\mathrm{sec}}=\mathrm{k}\left(\frac{\mathrm{mol}}{\ell}\right)^{\mathrm{n}}$
$\Rightarrow \mathrm{k}=\mathrm{mol}^{(1-\mathrm{n})} \ell^{(\mathrm{n}-1)} \mathrm{s}^{-1}$
7. The product obtained from the electrolytic oxidation of acidified sulphate solution, is:
(1) $\mathrm{HO}_{2} \mathrm{SOSO}_{2} \mathrm{H}$
(2) $\mathrm{HO}_{3} \mathrm{SOOSO}_{3} \mathrm{H}$
(3) HSO_{4}^{-}
(4) $\mathrm{HO}_{3} \mathrm{SOSO}_{3} \mathrm{H}$

Sol. (2)
anode: $2 \mathrm{SO}_{4}^{-2}(\mathrm{aq}) \rightarrow\left(\mathrm{S}_{2} \mathrm{O}_{8}\right)^{-2}+2 \mathrm{e}^{-}$
Cathode: $2 \mathrm{H}^{2}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
Electrolysis of concentrated solution of acidified sulphate solution yields $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
8. Presence of which reagent will affect the reversibility of the following reaction, and change it to a irreversible reaction:

$$
\mathrm{CH}_{4}+\mathrm{I}_{2} \underset{\text { Reversible }}{\mathrm{hv}} \mathrm{CH}_{3}-\mathrm{I}+\mathrm{HI}
$$

(1) HOCl
(2) LiquidNH ${ }_{3}$
(3) dilute HNO_{2}
(4) Concentrated HIO_{3}

Sol. (4)
Iodination of alkane is reversible reaction.
It can be irreversible in the presence of strong oxidising agent like conc. HNO_{3} or conc. HIO_{3}
9. Match List-I with List-II :

$$
\text { List - I } \quad \text { List - II }
$$

(a) NaOH
(i) Acidic
(b) $\mathrm{Be}(\mathrm{OH})_{2}$
(ii) Basic
(c) $\mathrm{Ca}(\mathrm{OH})_{2}$
(iii) Amphoteric
(d) $\mathrm{B}(\mathrm{OH})_{3}$
(e) $\mathrm{Al}(\mathrm{OH})_{3}$

Choose the most appropriate answer from the option given below :
(1) (a)-(ii), (b)-(ii), (c)-(iii), (d)-(ii), (e)-(iii)
(2) (a)-(ii), (b)-(iii), (c)-(ii), (d)-(i), (e)-(iii)
(3) (a)-(ii), (b)-(ii), (c)-(iii), (d)-(i), (e)-(iii)
(4) (a)-(ii), (b)-(i), (c)-(ii), (d)-(iii), (e)-(iii)

Sol. (2)
$\mathrm{NaOH} \longrightarrow$ Basic
$\mathrm{Be}(\mathrm{OH})_{2} \longrightarrow$ Amphoteric
$\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow$ Basic
$\mathrm{B}(\mathrm{OH})_{3} \longrightarrow$ Acidic
$\mathrm{Al}(\mathrm{OH})_{3} \longrightarrow$ Amphoteric
10. Given below are two statements:

Statement I :Aniline is less basic than acetamide.
Statement II :In aniline, the lone pair of electrons on nitrogen atom is delocalised over benzene ring due to resonance and hence less available to a proton.
Choose the most appropriate option;
(1) Both statement I and statement II are true.
(2) Both statement I and statement II are false.
(3) Statement I is true but statement II is false.
(4) Statement I is false but statement II is true.

Sol. (4)

Explanation :- aniline is more basic than acetamide because in acetamide, lone pair of nitrogen is delocalized to more electronegative element oxygen.
In Aniline lone pair of nitrogen delocalised over benzene ring.
11. Which one of the following compounds will give orange precipitate when treated with 2, 4dinitrophenyl hydrazine?
(1)

(2)

(3)

(4)

Sol. (4)

Explanation \Rightarrow 2-4-D.N.P test is used for carbonyl compound (aldehyde \& ketone)
12. Staggered and eclipsed conformers of ethane are:
(1) Enantiomers
(2) Rotamers
(3) Mirror images
(4) Polymers

Sol. (2)

Staggered and eclipsed conformers of ethane also known as rotamers
13. The number of geometrical isomers found in the metal complexes $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$, $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$, $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$ and $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$respectively, are :
(1) $1,1,1,1$
(2) 2, 1, 2, 2
(3) $2,1,2,1$
(4) 2, 0, 2, 2

Sol. (NTA-2)

Motion-4

2 Geometrical isomers
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \rightarrow$ All ligands are same $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$

$\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$

14. The parameters of the unit cell of a substance are $\mathrm{a}=2.5, \mathrm{~b}=3.0, \mathrm{c}=4.0, \alpha=90^{\circ}, \beta=120^{\circ}$ $\gamma=90^{\circ}$. The crystal system of the substance is :
(1) Orthorhombic
(2) Triclinic
(3) Hexagonal
(4) Monoclinic

Sol. (4)

$a \neq b \neq c$ and $\alpha=\gamma=90^{\circ} \neq \beta$
are parameters of monoclinic unit cell.
15. Given below are two statements:

Statement I :Rutherford's gold foil experiment cannot explain the line spectrum of hydrogen atom.
Statement II :Bohr'smodel of hydrogen atom contradicts Heisenberg's uncertainty principle.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is false but statement II is true.
(2) Both statement I and statement II are false.
(3) Statement I is true but statement II is false.
(4) Both statement I and statement II are true.

Sol. (4)

Rutherford's gold foil experiment only proved that electrons are held towards nucleus by electrostatic forces of attraction and move in circular orbits with very high speeds.
Bohr's model gave exact formula for simultaneous calculation of speed \& distance of electron from the nucleus, something which was deemed impossible according to Heisenberg.
16.

(A)

The compound ' A ' is a complementary base of \qquad in DNA stands.
(1) Cytosine
(2) Adenine
(3) Guanine
(4) Uracil

Sol. (2)

Given structure is Thymine and Thymine being paired with adenine.
17. The oxidation states of ' P ' in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$, respectively, are:
(1) 5, 3 and 4
(2) 6, 4 and 5
(3) 5, 4 and 3
(4) 7, 5 and 6

Sol. (1)

Oxidation state of P in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ is 5, $3 \& 4$ respectively
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
$2 x+4(+1)+7(-2)=0$
$x=+5$
$\mathrm{H}_{4} \underline{\mathrm{P}}_{2} \mathrm{O}_{5}$
$2 x+4(+1)+5(-2)=0$
$x=+3$
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
$2 x+4(+1)+6(-2)=0$
$x=+4$
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
18. Which one among the following chemical tests is used to distinguish monosaccharide from disaccharide?
(1) Barfoed test
(2) Seliwanoff's test
(3) Tollen's test
(4) Iodine test

Sol. (1)
Barford test is used for distinguish mono-saccharide from disaccharide
19. Match List-I with List-II :

(a)Furacin
(b)Arsphenamine
(c)Dimetone
(d)Valium
(i) Antibiotic
(ii) Tranquilizers
(iii) Antiseptic
(iv) Synthetic antihistamines

Choose the most appropriate match :
(1) (a)-(iii), (b)-(iv), (c)-(ii),(d)-(i)
(2) (a)-(i), (b)-(iii), (c)-(iv),(d)-(ii)
(3) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
(4) (a)-(iii), (b)-(i), (c)-(iv),(d)-(ii)

Sol. (4)
\longrightarrow furacine acts as Antiseptic
\longrightarrow Arsphenamine also known as salvarsan acts as antibiotic
\longrightarrow Dimetone is synthetic histamine
\longrightarrow valium is a Tranqulizer
20. The type of hybridisation and magnetic property of the complex $\left[\mathrm{MnCl}_{6}\right]^{3-}$, respectively, are :
(1) $d^{2} s p^{3}$ and paramagnetic
(2) $d^{2} s p^{3}$ and diamagnetic
(3) $s p^{3} d^{2}$ and paramagnetic
(4) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and diamagnetic

Sol. (3)
$\left[\mathrm{MnCl}_{6}\right]^{3-}$

Paramagnetic and having 4 unpaired electrons.

SECTION -B

1. In gaseous triethyl amine the " $-\mathrm{C}-\mathrm{N}-\mathrm{C}-$ " bond angle is \qquad degree.

Sol. 180

In gaseous triethyl amine the "-C-N-C-" bond angle is 108 degree.
2. The density of NaOH solution is $1.2 \mathrm{gcm}^{-3}$. The molality of this solution is \qquad m. (Round off to the NearestInteger)
[Use:Atomicmasses:Na:23.0u $\quad \mathrm{O}: 16.0 \mathrm{u} \quad \mathrm{H}: 1.0 \mathrm{u}$, Density of $\mathrm{H}_{2} \mathrm{O}: 1.0 \mathrm{~g} \mathrm{~cm}^{-3}$]
Sol. 5
Consider 1ℓ solution
mass of solution $=(1.2 \times 1000) \mathrm{g}$
$=1200 \mathrm{gm}$
Neglecting volume of NaOH
Mass of water $=1000 \mathrm{gm}$
\Rightarrow Mass of $\mathrm{NaOH}=(1200-1000) \mathrm{gm}$
$=200 \mathrm{gm}$
\Rightarrow Moles of $\mathrm{NaOH}=\frac{200 \mathrm{~g}}{50 \mathrm{~g} / \mathrm{mol}}=5 \mathrm{~mol}$
\Rightarrow molality $=\frac{5 \mathrm{~mol}}{1 \mathrm{~kg}}=5 \mathrm{~m}$
3. $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{3} \quad \mathrm{~K}_{\mathrm{c}}=1.844$
3.0 moles of PCl_{5} is introduced in a 1 L closed reaction vessel at 380 K . The number of moles of PCl_{5} at equilibrium is \qquad $\times 10^{-3}$. (Round off to the Nearest Integer)

Sol. NTA-1400, MOTION-1396

$\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \quad \mathrm{K}_{2}=1.844$
$\mathrm{t}=03$ moles
$\mathrm{t}=\infty \quad \mathrm{x} \quad \mathrm{x}$
$\Rightarrow \quad \frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{\mathrm{x}^{2}}{3-\mathrm{x}} \quad=1.844$
$\Rightarrow \quad x^{2}+1.844-5.532=0$
$\Rightarrow \quad \mathrm{x}=\frac{-1.844+\sqrt{(1.844)^{2}+4 \times 5.532}}{2}$
$\cong \quad 1.604$
\Rightarrow Moles of $\mathrm{PCl}_{5}=3-1.604 \cong 1.396$
4. For water at $100^{\circ} \mathrm{C}$ and 1 bar ,
$\Delta_{\text {vap }} \mathrm{H}-\Delta_{\text {vap }} \mathrm{U}=$ \qquad $\times 10^{2} \mathrm{~J} \mathrm{~mol}^{-1}$. (Round off to the NearestInteger)
[Use : R=8.31 $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$]
[Assume volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is much smaller than volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Assume $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ treated as an ideal gas]
Sol. 31
$\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{v})}$
$\Delta H=\Delta U+\Delta n_{g} R T$
for 1 mole waters;
$\Delta \mathrm{n}_{\mathrm{g}}=1$
$\therefore \Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}=1 \mathrm{~mol} \times 8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{k} \times 373 \mathrm{~K}$
$=3099.63 \mathrm{~J} \cong 31 \times 10^{2} \mathrm{~J}$
Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696
5. The difference between bond orders of CO and NO is NO^{\oplus} is $\frac{\mathrm{x}}{2}$ where $\mathrm{x}=$ \qquad -. (Round off to the Nearest Integer)

Sol. 0

Bond order of $\mathrm{CO}=3$
Bond order of $\mathrm{NO}^{+}=3$
Difference $=0=\frac{x}{2}$
$x=0$
6. The number of geometrical isomers possible in triamminetrinitrocobalt (III) is X and in trioxalatochromate (III) is Y. Then the value of $X+Y$ is \qquad _.
Sol. 2
Triamminetrinitrocobalt(III) $\rightarrow\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
trioxalatochromate(III) ion $\rightarrow\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$

\&

Two geometrical
isomers (X)
$\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

$X+Y=2+0=2.0$
7. CO_{2} gas adsorbs on charcoal following Freundlich adsorption isotherm. For a given amount of charcoal, the mass of CO_{2} adsorbed becomes 64 times when the pressure of CO_{2} is doubled. The value of n in the Freundlich isotherm equation is \qquad $\times 10^{-2}$. (Round off to the Nearest Integer)
Sol. 17
Freundlich isotherm. ;
$\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{k} \cdot \mathrm{p}^{\frac{1}{\mathrm{n}}}$
Substituting values;
$\left(\frac{64}{1}\right)=(2)^{\frac{1}{n}} \Rightarrow n=\frac{1}{6}=0.166$
$\cong 17 \times 10^{-2}$
8. 1.46 g of a biopolymer dissolved in a 100 mL water at 300 K exerted an osmotic pressure of 2.42×10^{-3} bar.
The molar mass of the biopolymer is \qquad $\times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$. (Round off to the Nearest Integer)

$$
\left[\text { Use }: \mathrm{R}=0.083 \mathrm{~L} \text { bar } \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]
$$

Sol. 15
$\pi=$ CRT $\quad ; \pi=$ osmotic pressure
$C=$ molarity
$T=$ Temperature of solution
let the molar mass be $M \mathrm{gm} / \mathrm{mol}$

$$
\begin{aligned}
& 2.42 \times 10^{-3} \mathrm{bar}=\frac{\left(\frac{1.46 \mathrm{~g}}{\mathrm{Mgm} / \mathrm{mol}}\right)}{0.1 \ell} \times\left(\frac{0.083 \ell-\mathrm{bar}}{\mathrm{~mol}-\mathrm{K}}\right) \times(300 \mathrm{~K}) \\
& \Rightarrow \quad M=15.02 \times 10^{4} \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

9. An organic compound is subjected to chlorination to get compound A using 5.0 g of chlorine. When 0.5 g of compound A is reacted with AgNO_{3} [Carius Method], the percentage of chlorine in compound A is \qquad when it forms 0.3849 gof AgCl . (Round off to the Nearest Integer)
(Atomic masses of Ag and Cl are 107.87 and 35.5 respectively)
Sol. 19
$\mathrm{n}_{\mathrm{c} \ell}$ in compound $=\mathrm{n}_{\mathrm{AgCl}}=\frac{0.3849 \mathrm{~g}}{(107.87+35.5)} \mathrm{g} / \mathrm{mol}$
\Rightarrow mass of chlorine $=\mathrm{n}_{\mathrm{Cl}} \times 35.5=0.0953 \mathrm{gm}$
$\Rightarrow \%$ wt of chlorine $=\frac{0.0953}{0.5} \times 100$

$$
=19.06 \%
$$

10. The conductivity of a weak acid HA of concentration $0.001 \mathrm{~mol} \mathrm{~L}^{-1}$ is $2.0 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$. If $\Lambda_{\mathrm{m}}^{\circ}$ (HA) $=190 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, the ionization constant (K_{a}) of HA is equal to

Sol. 12

$\wedge_{\mathrm{m}}=1000 \times \frac{\kappa}{\mathrm{M}}$
$=1000 \times \frac{2 \times 10^{-5}}{0.001}=20 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\Rightarrow \alpha=\frac{\wedge_{\mathrm{m}}}{\wedge_{\mathrm{m}}^{\infty}}=\frac{20}{190}=\left(\frac{2}{19}\right)$
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$0.001(1-\alpha) 0.001 \alpha 0.001 \alpha$
$\Rightarrow \quad \mathrm{k}_{\mathrm{a}}=0.001\left(\frac{\alpha^{2}}{1-\alpha}\right)=\frac{0.001 \times\left(\frac{2}{19}\right)^{2}}{1-\left(\frac{2}{19}\right)}$
$=12.3 \times 10^{-6}$

