CHEMISTRY
 JEE-MAIN (July-Attempt)
 27 July (Shift-2) Paper Solution

SECTION - A

1. The correct decreasing order of energy for the orbitals having, following set of quantum numbers:
(A) $n=3, l=0, m=0$
(B) $n=4, l=0, m=0$
(C) $n=3, l=1, m=0$
(D) $n=3, l=2, m=1$
(A) (D) $>$ (B) $>$ (C) $>$ (A)
(B) (B) $>$ (D) $>$ (C) $>$ (A)
(C) $($ C $)>($ B $)>($ D $)>($ A $)$
(D) (B) $>$ (C) $>$ (D) $>$ (A)

Sol. A
Energy of Orbital α value of ($\mathrm{n}+l$)
When same value of $(\mathrm{n}+l$) then
Energy of orbital α value of n

	n		l		$(n+l)$
(A)	3	+	0		3
(B)	4	+	0	$=$	4
(C)	3	+	1	$=$	4
(D)	3	+	2		

Energy order: $(\mathrm{D})>(\mathrm{B})>(\mathrm{C})>(\mathrm{A})$
Correct option-A

2. Match List-I with List-II

List-I
(A) $\psi_{M O}=\psi_{A}-\psi_{B}$
(B) $\mu=Q \times r$
(C) $\frac{N_{b}-N_{a}}{2}$
(D) $\psi_{M O}=\psi_{A}+\psi_{B}$

Choose the correct answer from the options given below
(A) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(B) (A)-(III), (B)-(IV), (C)-(I), (D)-(I)
(C) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(D) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

Sol. C
(A) $\psi_{M O}=\psi_{A}-\psi_{B} \rightarrow$ Anti-bonding molecular orbital
(B) $\mu=Q \times r \quad \rightarrow$ Dipole moment
(C) $\frac{N_{b}-N_{a}}{2} \quad \rightarrow$ Bond order
(D) $\psi_{M O}=\psi_{A}+\psi_{B} \rightarrow$ Bonding molecular orbital
3. The plot of pH -Metric titration of weak base $\mathrm{NH}_{4} \mathrm{OH}$ vs strong acid HCl looks like:
(A)

(B)

(C)

(D)

Sol. A

$\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
At end point
After end print $\mathrm{HCl} \longrightarrow \mathrm{H}^{\oplus}+\mathrm{Cl}^{-}$
(${ }^{\mathrm{PH}}$ decrese slowly)
4. Given below are two statements:

Statement I: For KI, molar conductivity increases steeply with dilution
Statement II : For carbonic acid, molar conductivity increases slowly with dilution
In the light of the above statements, choose the correct answer from the option given below:
(A) Both statement I and Statement II are true:
(B) Both statement I and Statement II are false
(C) Statement I is true but Statement is false
(D) Statement I is false but statement II is true

Sol. B
$\mathrm{KI} \longrightarrow \mathrm{K}^{+}+\mathrm{I}^{-}$
(Strong electrolyte)
On dilution. Molar conductivity Inc. steeply

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{H}^{\oplus}+\mathrm{CO}_{3}^{-2}
$$

(weak electrolyte)
On dilution molar conductivity inc steeply
5. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R)
Assertion (A) : Dissolved substance can be removed from a colloidal solution by diffusion through a parchment paper.
Reason (R) : Particles in a true solution cannot pass through parchment paper but the colloidal particles can pass through the parchment paper.
In the light to the above statements, choose the correct answer from the option given below:
(A) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(B) Both (A) and (R) are correct and (R) is not the correct explanation of (A)
(C) (A) is correct but (R) is not correct
(D) (A) is correct but (R) is correct

Sol. C
(A) Dissolved substances can be removed from a colloidal solution by diffusion through a parchment paper. Correct
(R) Parchment paper : true solution passed and colloided solution cannot passed.

Correct Ans. (C)
6. Outermost electronic configuration of four elements A, B, C, D are given below:
(A) $3 s^{2}$
(B) $3 s^{2} 3 p^{1}$
(C) $3 s^{2} 3 p^{3}$
(D) $3 s^{2} 3 p^{4}$

The correct order of first ionization enthalpy for them is:
(A) $($ A $)<$ (B) $<$ (C) $<$ (D)
(B) $<$ (A) $<$ (D) $<$ (C)
(B) $($ B $)<$ (D) $<$ (A) $<$ (C)
(B) $<$ (A) $<$ (C) $<$ (D)

Sol. B

$$
3 s^{2} 3 p^{1}<3 s^{2}<3 s^{2} 3 p^{4}<3 s^{2} 3 p^{3}
$$

7. An element A of group 1 shows similarity to an element B belonging to group 2. If A has maximum hydration enthalpy in group 1 then B is:
(A) $M g$
(B) $B e$
(C) Ca
(D) Sr

Sol. A
In group 1 Li has highest hydration enthalpy which has diagonal relationship with group II element Mg.
8. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A) : Boron is unable to form $B F_{6}^{3-}$
Reason (R) : Size of B is very small
In the light to the above statements, choose the correct answer from the option given below:
(A) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(B) Both (A) and (R) are correct and (R) is not the correct explanation of (A)
(C) (A) is correct but (R) is not correct
(D) (A) is correct but (R) is correct

Sol. B

Boron do not form $\mathrm{BF}_{6}{ }^{-3}$ because. Boron does not have vacent d orbital.
So, it can not expand octect.
9. In neutral or alkaline solution, MnO_{4}^{-}oxidises thiosulphate to:
(A) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
(B) $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
(C) SO_{3}^{2-}
(D) SO_{4}^{2-}

Sol. D
$8 \mathrm{KMnO}_{4}+3 \mathrm{~S}_{2} \mathrm{O}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 8 \mathrm{MnO}_{2}+6 \mathrm{SO}_{4}^{-2}+2 \mathrm{OH}^{-}$
10. Low oxidation state of metals in their complexes are common when ligands:
(A) have good π-accepting character
(B) have good σ-donor character
(C) are having good π-donating ability
(D) are having poor σ - donating ability

Sol. A
When metal has low oxidation state, it has more density in d orbital.
So, it has more tendency to back donate electrons, thus compound must have good π acceptor ligand.
11. Given below are two statements :

Statement I : The non bio-degradable fly ash slag from steel industry can be used by cement industry.
Statement II : The fuel obtained from plastic waste is lead free.
(A) Both statement I and Statement II are correct
(B) Both statement I and statement Ii are incorrect
(C) Statement I is correct but Statement II is incorrect
(D) Statement I is incorrect but statement II is correct

Sol. A
Plastic waste are called green fuel.
12. The structure of A in the given reaction is:

(A)

(B)

(C)

(D)

Sol C

13. Major product ' B ' of the following reaction sequence is

(A)

(B)

(C)

(D)

Sol. B

14. Match List-I with List-II

List-I
(A)

List-II

(I) Gatterman Koch reaction
(B) $\mathrm{CH}_{3}-\mathrm{CN} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{SnCl}_{2} \mathrm{HCl}} \mathrm{CH}_{3}-\mathrm{CHO}$
(II) Etard reaction
(C)

(III) Stephen reaction
(D)

(IV) Rosenmund reaction

Choose the correct answer from the options given below:
(A) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(B) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(C) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
(D) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)

Sol. A
(A)

Rosenmund reaction
(B) $\mathrm{CH}_{3}-\mathrm{CN} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{SnCl}_{2} \mathrm{HCl}} \mathrm{CH}_{3}-\mathrm{CHO}$

Stephen reaction

(C)

(D)

Gatterman Koch reaction

15. Match List-I with List-II

List-I

(Polymer)
(A) Neoprene
(B) Teflon
(C) Acrilan
(D) Natural rubber

List-II

(Monomer)
(I) Acrylontrile
(II) Chloroprene
(III) Tetrafluoroethene
(IV) Isoprene

Choose the correct answer from the options given below:
(A) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
(B)-(II), (B)-(I), (C)-(III), (D)-(IV)
(C) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(D)-(I), (B)-(II), (C)-(III), (D)-(IV)

Sol. A

(A)

(Chloroprene)
(B) Tetrofluoro
 ethene

Teflon

acrilon
(D)

Isoprene
16. An organic compound ' A ' contains nitrogen and chlorine. It dissolves readily in water to give a solution that turns litmus red. Titration of compound ' A ' with standard base indicates that the molecular weight of ' A ' is 131 ± 2. When a sample of ' A ' is treated with aq. NaOH , a liquid separates which contains N but not Cl . Treatment of the obtained liquid with nitrous acid followed by phenol gives orange precipitate. The compound ' A ' is:
(A)

(B)

(C)

(D)

Sol. D

17. Match List-I with List-II

List-I

(A) Glucose + HI
(B) Glucose $+B r_{2}$ water
(C) Glucose + acetic anhydride
(D) Glucose $+\mathrm{HNO}_{3}$

List-II

(I) Gluconic acid
(II) Glucose pentacetate
(III) Saccharic acid
(IV) Hexane

Choose the correct answer from the options given below:
(A) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
(B) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(C) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(D) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)

Sol. A
(A) Glucose $\xrightarrow{\mathrm{HI}}$ n-hexane
(B) Glucose

(C) Glucose $\xrightarrow{5 \text { acetic anhydride }}$ Glucose pentacetate
(D) Glucose $\xrightarrow{\mathrm{HNO}_{3}} \stackrel{\substack{\mathrm{COOH} \\(\mathrm{CHOH} \\ \mid}}{\mathrm{CH}-\mathrm{OH})_{4}}$

Saccharic acid
18. Which of the following enhances the lathering property of soap?
(A) Sodium stearate
(B) Sodium carbonate
(C) Sodium rosinate
(D) Trisodium phosphate

Sol. C
Sodium rosinate enhances the lathering properties of soap
Sodium rosinate help to lather form.
19. Match List-I with List-II

List-I
(Mixture)
(A) Chloroform \& Aniline
(B) Benzoic acid \& Naphthalene
(C) Water \& Aniline
(D) Naphthalene \& Sodium chloride

List-II

(Purification Process)
(I) Steam distillation
(II) Sublimation
(III) Distillation
(IV) Crystallisation

Choose the correct answer from the options given below:
(A) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
(B) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(C) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(D) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Sol. D
(A) Chloroform + Aniline \longrightarrow (III) Distillation
(B) Benzoic acid + Naphthalene \longrightarrow (IV) Crystallisation
(C) Water + Aniline \longrightarrow (I) Steam distillation
(D) Naphthalene + Sodium chloride \longrightarrow (II) Sublimation
20. Fe^{3+} cation gives a prussian blue precipitate addition of potassium ferrocyanide solution due to the formation of:
(A) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(B) $\mathrm{Fe}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$
(C) $\mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{CN})_{4}\right]_{2}$
(D) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$

Sol. D

$$
\begin{aligned}
4 \mathrm{Fe}^{+3}+3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4} \rightarrow & \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \\
& \text { Prussian blue PPT }
\end{aligned}
$$

21. The normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution obtained on mixing 100 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 50 mL of 0.1 M NaOH is \qquad $\times 10^{-1} \mathrm{~N}$. (Nearest Integer)
Sol. 1
Normality of Acid-Base mixture solution.

$$
\begin{aligned}
\mathrm{N}_{\text {mix }} & =\left|\frac{N_{A} V_{A}-N_{B} V_{B}}{V A+V B}\right|=\left|\frac{M_{A} n_{A} v_{A}-M_{B} n_{B} v_{B}}{V_{A}+V_{B}}\right| \\
& =\left|\frac{0.1 \times 2 \times 100-0.1 \times 1 \times 50}{100+50}\right| \\
& =\frac{20-5}{150}=\frac{15}{150}=0.1 N
\end{aligned}
$$

Ans. : 1×10^{-1}, Ans. (1)
22. For a real gas at $25^{\circ} \mathrm{C}$ temperature and high pressure (99 bar) the value of compressibility factor is 2 , so the value of Vander Waal's constant 'b' should be \qquad $\times 10^{-2} \mathrm{Lmol}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Sol. 25

$$
\begin{aligned}
\mathrm{P} & =99 \mathrm{bar} \mathrm{z}=2 \mathrm{~b}=? \\
& =99 \times 0.987 \mathrm{~atm}
\end{aligned}
$$

Vander wall equation-

$$
\left(P+\frac{a}{V^{2}}\right)(v-b)=\mathrm{RT} \text { for } 1 \text { mole }
$$

At high $\mathrm{P} \rightarrow \frac{a}{v^{2}} \rightarrow$ can be neglect
But $\mathrm{b} \rightarrow$ can not be neglected

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V}-\mathrm{b})=\mathrm{RT} \\
& \mathrm{PV}-\mathrm{Pb}=\mathrm{RT} \\
& \frac{P V}{R T}=\frac{P b}{R T}=\frac{R T}{R T} \\
& \downarrow \\
& \mathrm{Z}=\frac{P b}{R T}+1 \\
& 2=\frac{P b}{R T}+1 \\
& \frac{P b}{R T}=2-1=1 \\
& 99 \times 0.987 \times \mathrm{b}=8.3 \times 298 \\
& \mathrm{~b}=0.253=25.3 \times 10^{-2}
\end{aligned}
$$

Ans. : 25 (nearest integer)
23. A gas (Molar mass $=280 \mathrm{~g} \mathrm{~mol}^{-1}$) was burnt in excess O_{2} in a constant volume calorimeter and during combustion the temperature of calorimeter increaed from 298.0 K to 298.45 K . If the capacity of calorimeter is $2.5 \mathrm{~kJ} \mathrm{~K}^{-1}$ and enthalpy of combustion of gas is $9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ then amount of gas burnt is \qquad g. (Nearest Integer)

Sol. 35
At constant volume $\rightarrow \Delta \mathrm{U}$

$$
\begin{aligned}
\Delta \mathrm{u}(\mathrm{KJ} / \mathrm{mol}) & =\frac{\text { Heat capacity } \times \text { change in temp. }}{\text { No.of moles of gas }} \\
\Delta \mathrm{T} & =298.5-298=0.45 \mathrm{~K}
\end{aligned}
$$

Heat capacity (c_{v}) $=2.5 \mathrm{~kJ} / \mathrm{K}$

$$
\begin{aligned}
& \Delta \mathrm{u}=9 \mathrm{KJ} \\
& 9 \mathrm{KJ}=\frac{2.5 \mathrm{kj} / \mathrm{K} \times 0.45 \mathrm{~K}}{\text { no.of molesof gase }}
\end{aligned}
$$

No. of moles of gas $=0.125 \mathrm{~mol}$.
Mass of gas

$$
=280 \times 0.125=33 \mathrm{gram}
$$

Ans. : 35
24. When a certain amount of solid A is dissolved in 100 g of water at $25^{\circ} \mathrm{C}$ to make a dilute solution, the vapour pressure of the solution is reduced to one-half of that of pure water. The vapour pressure of pure water is 23.76 mm Hg . The number of moles of solute A added is \qquad -. (Nearest Integer)
Sol. 6
Mass of water solvent $=100 \mathrm{~g}$

$$
\begin{aligned}
& \mathrm{P}^{0}=23.76 \mathrm{~mm} \mathrm{Hg} . \\
& \mathrm{P}_{\mathrm{S}}=\frac{P^{0}}{2}=\frac{23.76}{2} \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

No. of Moles of solute $=$?

$$
\begin{aligned}
& \frac{P^{0}-P_{S}}{P_{S}}=\frac{n}{N} \rightarrow \text { for all type solution } \\
& \frac{23.76-\frac{23.76}{2}}{\frac{23.76}{2}}=\frac{n}{N}=\frac{n}{\frac{100}{18}} \\
& 1=\frac{n}{5.55} \\
& \mathrm{~N}=5.55
\end{aligned}
$$

Ans. : 6
25. $[A] \rightarrow[B]$

Reactant Product
If formation of compound [B] follows the first order of kinetic and after 70 minutes the concentration of $[\mathrm{A}]$ was found to be half of its initial concentration. Then the rate constant of the reaction is $x \times 10^{-6} s^{-1}$. The value of x is \qquad . (Nearest Integer)
Sol. 165
First order reaction

$$
\begin{aligned}
& \mathrm{T}_{1 / 2}=70 \mathrm{~min} \\
& =70 \times 60 \mathrm{sec} . \\
& \mathrm{K}=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{70 \times 60}=0.000165 \\
& \mathrm{~K}=165 \times 10^{-6} \mathrm{sec}^{-1}
\end{aligned}
$$

Ans. : 165
26. Among the following ores Bauxite, Siderite, Cuprite, Calamine, Haematite, Kaolinite, Malachite, Magnetite, Sphalerite, Limonite, Cryolite, The number of principal ores if iron is \qquad _.
Sol. 4
Haematite $\rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
Magnetite $\rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$
Siderite $\rightarrow \mathrm{FeCO}_{3}$
Limonite $\rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} .3 \mathrm{H}_{2} \mathrm{O}$
27. The oxidation state of manganese in the product obtained in a reaction of potassium permanganate and hydrogen peroxide in basic medium is \qquad -.
Sol. 4
$2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}+2 \mathrm{KOH}+4 \mathrm{H}_{2} \mathrm{O}$
0.5 of Mn in $\mathrm{MnO}_{2} \longrightarrow 4$

Ans. : 4
28. The number of molecules(s) or ion(s) from the following having non-planar structure is \qquad $\mathrm{NO}_{3}^{-}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{BF}_{3}, \mathrm{PCl}_{3}, \mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{XeO}_{3}, \mathrm{PH}_{4}^{+}, \mathrm{SO}_{3},\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$
Sol. 6

Molecules

NO_{3}^{-}
$\mathrm{H}_{2} \mathrm{O}_{2}$
BF_{3}
PCl_{3}
XeF_{4}
SF_{4}
XeO_{3}
PH_{4}^{+}
SO_{3}
$\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$

Planar/non planar

Planar
non planar
Planar
non planar
Planar
non planar
non planar
non planar
Planar
non planar
29. The spin only magnetic moment of the complex present in Fehling's reagent is \qquad B.M. (Nearest Integer)
Sol. 2
Fehling solution is a complex of Cu^{++}
$\mathrm{Cu}^{++}=3 \mathrm{~d}^{9}$
No. of unpaired $\mathrm{e}^{-}=1$
M.M. $=\sqrt{1(1+2)}=\sqrt{3}=1.73 \mathrm{BM}$
30.

In the above reaction, 5 g of toluene is converted into benzaldehyde with 92% yield. The amount of benzaldehyde produced is \qquad $\times 10^{-2} g$. (Nearest integer)

Sol. 530

5 g
moles $=\frac{5}{92}$

produced $=\frac{5}{92} \times \frac{92}{100}$

$$
=5 \times 10^{-2} \text { moles }
$$

$$
\begin{aligned}
\text { produced } & =5 \times 10^{-2} \text { moles } \times 106 \mathrm{~g} / \mathrm{mols} \\
& =530 \times 10^{-2} \mathrm{~g}
\end{aligned}
$$

