CHEMISTRY
 JEE-MAIN (July-Attempt)
 27 July (Shift-1) Paper Solution

SECTION - A

1. 250 g solution of D-glucose in water contains 10.8% of carbon by weight. The molality of the solution is nearest to
(Given: Atomic weights are, $\mathrm{H}, 1 \mathrm{u} ; \mathrm{C}, 12 \mathrm{u} ; 0,16 \mathrm{u}$)
(A) 1.03
(B) 2.06
(C) 3.09
(D) 5.40

Sol. B
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow$ Glucose
We know: $\frac{\text { mass of C }}{\text { mass of glucose }}=\frac{72}{180}$
Given: $\% \mathrm{C}=10.8=\frac{\text { mass of } \mathrm{C}}{\text { mass of solution }} \times 100$
$\frac{10.8 \times 250}{100}=$ mass of $C \Rightarrow$ Mass of $C=27 \mathrm{gm}$
\therefore mass of glucose $=67.5 \mathrm{gm}$
\therefore moles of glucose $=0.375$ moles
Mass of solvent $=250-67.5 \mathrm{gm}=182.5 \mathrm{gm}$
\therefore Molality $=\frac{0.375}{0.1825}=2.055 \approx 2.06$
2. Given below are two statements.

Statement $\mathrm{I}: \mathrm{O}_{2}, \mathrm{Cu}^{2+}$, and Fe^{3+} are weakly attracted by magnetic field and are magnetized in the same direction as magnetic field.
Statement II : NaCl and $\mathrm{H}_{2} \mathrm{O}$ are weakly magnetized in opposite direction to magnetic field.
In the light of the above statements, choose most appropriate answer from the options given belwo:
(A) Both statement I and statement II are correct.
(B) Both statement I and statement II are incorrect
(C) statement I is correct but statement II is incorrect
(D) statement I is incorrect but statement II is correct

Sol. A
(A) $\mathrm{O}_{2}, \mathrm{Cu}^{+2}$ and Fe^{+3} are peramegnetic substance weakly attracted by magnetic field (Correct)
(R) H 2 O and NaCl are diamagnetic substance and weakly oppose by magnetic field.
[Correct Option (A)]
3. Given below are two statement. One labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Energy of 2s orbital of hydrogen atom is greater than that of 2s orbital of lithium.
Reason R: Energies of the orbitals in the same subshell decrease with increase in the atomic number.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both A and R are true and R is the correct explanation of A .
(B) Both A and R are true but R is NOT the correct explanation of A .
(C) A is true but R is false.
(D) A is false but R is true.

Sol. A
(A) Energy of 2s orbital H atom $>\mathrm{G}$ atom
(R) Energy of orbital in sami sub shell dec. with ine in atomic number
4. Given below are two statement. One is labelled as assertion A and the other is labelled as Reason R.
Assertion A: Activated charcoal adsorbs SO_{2} more efficiently than CH_{4}.
Reason R: Gases with lower critical temperatures are readily adsorbed by activated charcoal.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both A and R are correct and R is the correct explanation of A .
(B) Both A and R are correct but R is NOT the correct explanation of A .
(C) A is correct but R is not correct
(D) A is not correct but R is correct.

Sol. C
Adsorption of gas \propto polarity of gas
\propto critical temperature
(A) Adsorption $\rightarrow \mathrm{SO}_{2}>\mathrm{CH}_{4}$ Polar gas Non polar gas
(Correct)
(R) Lewer critical Himp-lower adsorption
(Wrong)
Ans.: (C)
5. Boiling point of a 2% aqueous solution of a non-volatile solute A is equal to the boiling point of 8% aqueous solution of a non-volatile solute B . The relation between molecular weights of A and B is
(A) $\mathrm{M}_{\mathrm{A}}=4 \mathrm{MB}_{\mathrm{B}}$
(B) $\mathrm{M}_{\mathrm{B}}=4 \mathrm{M}_{\mathrm{A}}$
(C) $M_{A}=8 M_{B}$
(D) $M_{B}=8 M_{A}$

Sol. B
$\pi \mathrm{A}=\pi \mathrm{B} \rightarrow$ Isotoric
$\mathrm{C}_{1} \mathrm{RT}=\mathrm{C}_{2} \mathrm{RT}$
$\mathrm{C}_{1}=\mathrm{C}_{2}$
$\frac{2}{M_{A}} \times \frac{1}{100}=\frac{8 \times 1}{M_{B} \times 100} \Rightarrow \frac{2}{M_{A}} \times \frac{1}{100}=\frac{8 \times 1}{M_{B} \times 100}$
$\frac{M_{A}}{M_{B}}=\frac{1}{4}$
$M_{B}=4 M_{A}$
Ans. (B) option
6. The incorrect statement is
(A) The first ionization enthalpy of K is less than that of Na and Li .
(B) Xe does not have the lowest first ionization enthalpy in its group.
(C) The first ionization enthalpy of element with atomic number 37 is lower than that of the element with atomic number 38.
(D) The first ionization enthalpy of Ga is higher than that of the d-block element with atomic number 30 .

Sol. D
(A) $\begin{aligned} & \mathrm{Li} \\ & \mathrm{Na} \\ & \mathrm{K}\end{aligned}{ }_{(1 . \mathrm{E} \downarrow)} \mathrm{So}, \mathrm{K}<\mathrm{Na}<\mathrm{Li}$
(B) In the period, noble gas has maximum 1.E
(C) atomic \quad number $37 \Rightarrow 2,8,8,18+1 \Rightarrow s$ Block S^{1}
atomic number $38 \Rightarrow 2,8,8,18+2 \Rightarrow$ s Block S ${ }^{2}$
So, $Z=37$ has lesser 1. E than $\mathrm{Z}=38$
(D) actually the first $1 . \mathrm{E}$ of $\mathrm{Zn}>1 . \mathrm{E}_{1}$ of Ga

Due to completely filled orbitals
7. Which of the following methods are not used to refine any metal?
A. Liquation
B. Calcination
C. Electrolysis
D. Leaching
E. Distillation

Choose the correct answer from the options given below:
(A) B and D only
(B) A, B, D and E only
(C) B, D and E only
(D) A, C and E only

Sol. A
Methods for concontration methods for refining
Calcination
Liquation
Leaching
Electrolysis
Distillation
8. Given below are two statements.

Statement I: Hydrogen peroxide can act as an oxidizing agent in both acidic and basic conditions.
Statement II: Density of hydrogen peroxide at 298 K is lower than that of $\mathrm{D}_{2} \mathrm{O}$.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both statement I and statement II are true
(B) Both statement I and II statement II are false
(C) statement I is true but statement II is false
(D) statement I is false but statement II is true

Sol. C
$\mathrm{H}_{2}{ }^{-1} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
\rightarrow the oxidation state of oxygen in hydrogen peroxide is -1 , means it can be oxidized to zero; and reduced to -2 . Hence it can act as both oxidising as was as reducing agent; so statement is correct
\rightarrow Density of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $1.44 \mathrm{~g} / \mathrm{ml}$ which is more than $\mathrm{D}_{2} \mathrm{O}\{1.106 \mathrm{~g} / \mathrm{ml}\}$ at 298 K so statement 2 is false
9. Given below are two statements.

Statement I: The chlorides of Be and Al have Cl -bridged structure. Both are soluble in organic solvents and act as Lewis bases.
Statement II: Hydroxides of Be and Al dissolve in excess alkali to give beryllate and aluminate ions.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both statement I and statement II are true
(B) Both statement I and statement II are false
(C) statement I is true but statement II is false
(D) statement I is false but statement II is true

Sol. D
Statement-I false
BeCl_{2} and AlCl_{3} act as lewis acid due to incomplete octet and having vacant orbitals
$\mathrm{Be}(\mathrm{OH})_{2}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2}$
Berylate ion
$\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$
Aluminate ion
\Rightarrow so statement-II is true
10. Which oxoacid of phosphorous has the highest number of oxygen atoms present in its chemical formula?
(A) Pyrophosphorus acid
(B) Hypophosphoric acid
(C) Phosphoric acid
(D) Pyrophosphoric acid

Sol. D
Which oxo acid of phasphorous has the highest number of oxygen atoms present in its chemical formull
Phosphoric acid Hypo phosphoric acid Pyrophosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{6}$

2(Phosphoric acid) - $\mathrm{H}_{2} \mathrm{O}_{2}$
\Rightarrow Hypophosphoric acid

Pyrophosphoric acid $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

$2\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)-\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
2(Phosphoric acid - $\mathrm{H}_{2} \mathrm{O}$)
\Rightarrow Pyro phosphoric acid

Phosphoric acid $-\mathrm{O} \Rightarrow$ Phosphorous acid
$\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{O} \Rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}$
$2\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)-\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{6} \mathrm{P}_{2} \mathrm{O}_{6}-\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
So pyrophosphoric acid has maximum number of oxygen
11. Given below are two statements.

Statement I: Iron (III) catalyst, acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and neutral KMnO_{4} have the ability to oxidise I^{-}to I_{2} independently.
Statement II: Manganate ion is paramagnetic in nature and involves $\mathrm{p} \pi$ - $\mathrm{p} \pi$ bonding.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both statement I and statement II are true
(B) Both statement I and statement II are false
(C) statement I is true but statement II is false
(D) statement I is false but statement II is true

Sol. B
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{Cr}^{3+}+\mathrm{I}_{2}$
$\mathrm{KM}_{\mathrm{n}} \mathrm{O}_{4}^{-}+\mathrm{I}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{2+}+\mathrm{I}_{2}$
But Fe^{3+} can not Oxidise I^{-}to I_{2} because $\mathrm{E}_{\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)}^{0}$ is lower than that of $\mathrm{E}_{\left(\mathrm{I}^{-} / \mathrm{I} 2\right)}^{0}$
Statement-I is false
Statement-II magnate ion is paramagnetic but it consists of $\mathrm{d} \pi$-p π bonding
12. The total number of $\mathrm{Mn}=\mathrm{O}$ bonds in $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is \qquad —.
(A) 4
(B) 5
(C) 6
(D) 3

Sol. C $\mathrm{Mn}_{2} \mathrm{O}_{4}$

$\mathrm{Mn}=0 \Rightarrow 6$ bonds
13. Match List I with List II.

List I PoIlutant	List II Disease/sickness
A. Sulphate ($>500 \mathrm{ppm}$)	I. Methemoglobinemia
B. Nitrate $(>50 \mathrm{ppm})$	II. Brown mottling of teeth
C. Lead ($>50 \mathrm{ppb})$	III. Laxative effect
D. Fluoride $(>2 \mathrm{ppm})$	IV. Kidney damage

Choose the correct answer from the options given below:
(A) A-IV, B-I, C-II, D-III
(B) A-III, B-I, C-IV, D-II
(C) A-II, B-IV, C-I, D-III
(D) A-II, B-IV, C-III, D-I

Sol. B
Suphate ($>500 \mathrm{ppm}$) \rightarrow Laxative effect
Nitrate ($>50 \mathrm{ppm}$) \rightarrow methemoglobinemia
Lead ($>50 \mathrm{ppb}$) \rightarrow Kidney damage
Fluoride ($>2 \mathrm{ppm}$) \rightarrow Brown mottling of teeth
14. Given below are two statement: one is labelled as Assertion A and, the other is labelled as Reason R.
Assertion A: [6] Annulene, [8] Annulene and cis-[10] Annulene, are respectively aromatic, notaromatic and aromatic.

[6] Annulene

[8] Annulene Cis-[10] Annulene

Reason R: Planarity is one of the requirements of aromatic systems.
In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Both A and R are correct and R is the correct explanation of A.
(B) Both A and R are correct but R is NOT the correct explanation of A .
(C) A is correct but R is not correct
(D) A is not correct but R iscorrect.

Sol. D

Tab-shop.
Non-planar
Aromatic
H

Not-Aromatic
steric hindrance due to internal H
(Non-planar)

Non-planar
Hence-non-aromatic
15.

In the above reaction product B is:
Product B is
(A)

(B)

(C)

(D)

Sol. A

16. Match List I with List II.

List I Polymers	List II Commercial names
A. Phenol-formaldehyde resin	I. Glyptal
B. Copolymer of 1,3-butadiene and styrene	II. Novolac
C. Polyester of glycol and Phthalic acid	III. Buna-S
D. Polyester of glycol and terephthalic acid	IV. Dacron

Choose the correct answer from the options given below:
(A) A-II, B-III, C-IV, D-I
(B) A-II, B-III, C-I, D-IV
(C) A-II, B-I, C-III, D-IV
(D) A-III, B-II, C-IV, D-I

Sol. B

(B)

(C)

Dacron
17. A sugar ' X ' dehydrates very slowly under acidic condition to give furfural which on further reaction with resorcinol gives the coloured product after sometime.

Sugar ' X ' is
(A) Aldopentose
(B) Aldotetrose
(C) Oxalic acid
(D) Ketotetrose

Sol. A

aldopentose

red colour
18. Match List I with List II.

List I

B.

C.

List II

I. Anti-depressant]

II> 550 times sweeter than cane sugar

Choose the coorect answer from the options given below:
(A) A-IV, B-III, C-II, D-I
(B) A-III, B-I, C-II, D-IV
(C) A-III, B-IV, C-I, D-II
(D) A-III, B-I, C-IV, D-II

Sol. C
A.
 , marphine reduce the pain, hence it is narcotic-analgesic
B.
 chloroxylenol is used as antiseptic

D.
 Saccharin is 550 times sweeter than cane sugan
19. In carius method of estimation of halogen, 0.45 g of an organic compound gave 0.36 g of AgBr . Find out the percentage of bromine in the compound.
(Molar masses : $\mathrm{AgBr}=188 \mathrm{~mol}^{-1} ; \mathrm{Br}=80 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 34.04%
(B) 40.04%
(C) 36.03%
(D) 38.04%

Sol. A
$\mathrm{AgNO}_{3}+\underset{\uparrow}{\mathrm{Br}} \rightarrow \mathrm{AgBr}$
Organic compound
Mass of $\mathrm{AgBr}=0.36 \mathrm{~g}$
Moler mass of $\mathrm{AgBr}=108+80=188 \mathrm{~g}$
Moles of $\mathrm{AgBr}=\frac{0.36}{188}$
Moles of $\mathrm{Br}=\frac{0.36}{188}$
Mass of $\mathrm{Br}=\frac{0.36}{188} \times 80$
$\%$ of $\mathrm{Br}=\frac{\text { mass of } \mathrm{Br}}{\text { Mass of O.C. }} \times 100$
$=\frac{0.36}{188} \times \frac{80}{0.45} \times 100=34 \%$
20. Match List I with List II.

List I	List II
A. Benzenesulphonyl chloride	I. Test for primary amines
B. Hoffmann bromamide reaction	II. Anti Saytzeff
C. Carbylamine reaction	III. Hinsberg reagent
D. Hoffmann orientation	IV. Known reaction of Isocyanates.

Choose the correct answer from the options given belwo:
(A) A-IV, B-III, C-II, D-I
(B) A-IV, B-II, C-I, D-III
(C) A-III, B-IV, C-I, D-II
(D) A-IV, B-III, C-I, D-II

Sol. C
(A) Benzenesulphonyl chloride \rightarrow Hinsberg reagent

Hinsberg reagent is use to tistinguish between $1^{\circ}, 2^{\circ}, 3^{\circ}$ amines
(B) Hoffmann bromamide reaction \rightarrow Known reaction of Isocyanates reaction.

(C) Carbylamine reaction \rightarrow It is used for test of primary amine

$$
\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCH}_{3}+3 \mathrm{KOH} \rightarrow \mathrm{RNC}+3 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}
$$

(D) Hoffmann orientation \rightarrow Anit saytzeff rule
21. 20 mL of $0.02 \mathrm{M} \mathrm{X}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is used for the titration of 10 mL of Fe^{2+} solution in the acidic medium.
The molarity of Fe^{2+} solution is \qquad $\times 10^{-2} \mathrm{M}$. (Nearest Integer)
Sol. 24
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+6 \mathrm{Fe}^{+2}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{+3}+6 \mathrm{Fe}^{+3}+7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ equivalent $=\mathrm{Fe}+2$ equivalent
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\mathrm{M}_{1 \mathrm{n}_{1} \mathrm{~V} 2}=\mathrm{M}_{2} \mathrm{n}_{2} \mathrm{~V}_{2}$
$0.02 \times 6 \times 20=\mathrm{M}_{2} \times 1 \times 10$
$M_{2}=0.24$
$\mathrm{M}_{1}=24 \times 10^{-2}$
Ans. : 24
22. $2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

The above reaction has been studied at $800^{\circ} \mathrm{C}$. The related data are given in the table below

Reaction serial number	Initial Pressure of $\mathrm{H}_{2} / \mathrm{kPa}$	Initial Presure of $\mathrm{NO} / \mathrm{kPa}$	Initial rate		$\boxed{\left.\left(\frac{-\mathrm{dp}}{\mathrm{dt}}\right) / \mathrm{s}\right)}$
1	65.6	40	0.135		
2	65.6	20.1	0.033		
3	38.6	65.6	0.214		
4	19.2	65.6	0.106		

The order of the reaction with respect to NO is \qquad _.

Sol. 2
Rate $_{1}=K[40]^{n}=0.135$
Rate $_{2}=\mathrm{K}[20.1]^{\mathrm{n}}=0.033$
...(1)
Order w.r.t. No.

Eq. (1) $\div(2)$
$\frac{0.135}{0.033}=\left[\frac{40}{20.1}\right]^{n}$
$\mathrm{n}=2$
Ans.: 2
23. Amongst the following, the number of oxide(s) which are paramagnetic in nature is $\mathrm{Na}_{2} \mathrm{O}, \mathrm{KO}_{2}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{ClO}_{2}, \mathrm{NO}, \mathrm{SO}_{2}, \mathrm{Cl}_{2} \mathrm{O}$

Sol. 4
If total electron $=$ even \Rightarrow diamagnetic except $\{10,16,32\}$
If total electron = odd = parmagnetic

$\mathrm{Na}_{2} \mathrm{O}$ \Downarrow $-{ }^{-2}$ \Downarrow	KO_{2} \Downarrow	NO_{2}	$\mathrm{N}_{2} \mathrm{O} \quad \mathrm{CO}_{2}$	$\begin{gathered} \text { NO } \\ \Downarrow \\ \text { (odd) } \end{gathered}$	SO_{2}	$\mathrm{Cl}_{2} \mathrm{O}$
$10^{\mathrm{e}-}$ para	para	para	dia dia	para	dia	dia

24. The molar heat capacity for an ideal gas at constant pressure is $20.785 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. The change in internal energy is 5000 J upon heating it from 300 K to 500 K . The number of moles of the gas at constant volume is \qquad [Nearest integer] (Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

Sol. 2

$\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\mathrm{C}_{\mathrm{v}, \mathrm{m}}+\mathrm{R}$
$\Rightarrow C_{v, m}=20.785-8.314=12.471 \mathrm{~J} \mathrm{k}^{-1} \mathrm{ml}^{-1}$
$\Delta U=\mathrm{nC}_{\mathrm{v}, \mathrm{m}} \Delta \mathrm{T}$
$\Rightarrow \mathrm{n}=\frac{5000}{12.471 \times 200}=\frac{25}{12.471} \approx 2$
25. According to MO theory, number of species/ions from the following having identical order is \qquad .
$\mathrm{CN}^{-}, \mathrm{NO}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{2+}$

Sol. 3

26. At 310 K , the solubility of CaF_{2} in water is $2.34 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~mL}$. The solubility product of CaF_{2} is $\ldots \times 10^{-8}(\mathrm{~mol} / \mathrm{L})^{3}$. (Give molar mass: $\mathrm{CaF}_{2}=78 \mathrm{~g} \mathrm{~mol}^{-1}$)
Sol. 0
Solubility of $\mathrm{CaF}_{2}=2.34 \times 10^{-3} \mathrm{~g} / 100 \mathrm{ml}$
$=2.34 \times 10^{-2} \mathrm{~g} / 1000 \mathrm{ml}$
$=3 \times 10^{-4} \mathrm{~mole} / \mathrm{lit}$
Ksp of $\mathrm{CaF}_{2}=4 \mathrm{~S}^{3}=4 \times\left(3 \times 10^{-4}\right)^{3}$
$=10.8 \times 10^{-9}=10.8 \times 10^{-9}\left(\frac{\mathrm{M}}{\mathrm{L}}\right)^{3}$
27. The conductivity of a solution of complex with formula $\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{4}$ corresponds to $1: 1$ electrolyte, then the primary valency of central metal ion is \qquad
Sol. Official Ans. by NTA (1)
Motion Ans. (3)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
Primary valency $=$ oxidation no. $=+3$
28. In the titration of KMnO_{4} and oxalic acid in acidic medium, the change in oxidation number of carbon at the end point is \qquad

Sol. 1

$\mathrm{MnO}_{4}^{-}+\mathrm{CrO}_{4}^{-2} \rightarrow \mathrm{Mn}^{+2}+\mathrm{CO}_{2}$
O. No. of C in $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}=+3$
O. No. of C in $\mathrm{CO}_{2}=+4$

Change in O. No. of C
Ans. $=1$
29. Optical activity of an enantiomeric mixture is $+12.6^{\circ}$ and the specific rotation of $(+)$ isomer is $+30^{\circ}$. The optical purity is \qquad \%

Sol. 42
Optical acitivity enantiomeric mixture $=+12.6^{\circ}$
Speafic rotation of $(+)$ isomer $=+30^{\circ} \mathrm{C}$
$\%$ optical purity $=\frac{\text { rotation of mixture }}{\text { ratation of pure enantiomer }} \times 100$

$$
\begin{aligned}
& =\frac{+12.6^{0}}{+30^{\circ}} \times 100 \\
& =42
\end{aligned}
$$

30. In the following reaction

The \% yield for reaction I is 60% and that of reaction II is 50%. The overall Yield of the complete reaction is \qquad \% [Nearest integer]
Sol. 30
Let initial mole be n,
\% yield for reaction I is 60\%

Mole of

Mole of
 form $\frac{0.6 n \times 50}{100}=0.3 n$
Overall yield of complete reaction $=\frac{0.3 n}{n} \times 100$
= 30\%

