CHEMISTRY
 JEE-MAIN (July-Attempt)
 26 July (Shift-2) Paper Solution

SECTION - A

1. Hemoglobin contains 0.34% of iron by mass. The number of Fe atoms in 3.3 g of hemoglobin is (Given: Atomic mass of Fe is $56 \mathrm{u}, \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$.)
(A) 1.21×10^{5}
(B) 12.0×10^{16}
(C) 1.21×10^{20}
(D) 3.4×10^{22}

Sol. C

$\%$ of Iron in hemoglobin	$=0.34 \%$
Given mass of hemoglobin	$=3.3 \mathrm{~g}$
Mass of Iron in hemoglobin	$=3.3 \times \frac{0.34}{100}$

$\begin{aligned} \text { No. of Iron atoms } & =\frac{\text { mass }}{\text { GAM }} \times N_{A} \\ & =\frac{0.01122}{56} \times 6.023 \times 10^{23} \\ & =1.206 \times 10^{20} \\ & \approx 1.21 \times 10^{20}\end{aligned}$
2. Arrange the following in increasing order of their covalent character.
A. CaF_{2}
B. CaCl_{2}
C. CaBr_{2}
D. CaI_{2}

Choose the correct answer from the options given below.
(A) B $<$ A $<$ C $<$ D
(B) A $<$ B $<$ C $<$ D
(C) A $<$ B $<$ D $<$ C
(D) A $<$ C $<$ B $<$ D

Sol. B
Size of anion increase. Covalent character increase
covalent character $\rightarrow \mathrm{CaF}_{2}<\mathrm{CaCl}_{2}<\mathrm{CaBr}_{2}<\mathrm{CaI}_{2}$
3. Class XII students were asked to prepare one litre of buffer solution of pH 8.26 by their Chemistry teacher. The amount ammonium chloride to be dissolved by the student in 0.2 M ammonia solution to make one litre of the buffer is
(Given : $\mathrm{pK}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=4.74$
Molar mass of $\mathrm{NH}_{3}=17 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass of $\mathrm{NH}_{4} \mathrm{Cl}=53.5 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 53.5 g
(B) 72.3 g
(C) 107.0 g
(D) 126.0 g

Sol. C

Vsolution = 1 litre
$\mathrm{PH}=8.26 \quad \Rightarrow \quad \mathrm{POH}=14-8.26$
$\left[\mathrm{NH}_{3}\right]=0.2 \mathrm{M}=[$ Base $]=5.74$
$\mathrm{P}^{\mathrm{K}}\left(\mathrm{NH}_{3}\right)=4.74$
For basic buffer :
$\mathrm{P}^{\mathrm{OH}}=\mathrm{P}^{\mathrm{Kb}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$
$5.74=4.74+\log \frac{\left(\mathrm{NH}_{4} \mathrm{Cl}\right)}{0.2}$
$1=\log \left[\mathrm{NH}_{4} \mathrm{Cl}\right]-\log (1 / 5)$
Log [$\left.\mathrm{NH}_{4} \mathrm{Cl}\right]$

$$
=1-\log 5
$$

$$
=\log 10-\log 5
$$

$$
=\log \frac{10}{5}=\log 2
$$

[$\left.\mathrm{NH}_{4} \mathrm{Cl}\right]$

$$
=2 \mathrm{M}
$$

$\mathrm{V}_{\text {solution }}$

$$
=1 l
$$

Moles of $\mathrm{NH}_{4} \mathrm{Cl}$
$=2 \times 1=2 \mathrm{~mol}$
Mass of $\mathrm{NH}_{4} \mathrm{Cl}$

$$
=2 \times \mathrm{GMM}
$$

$$
=2 \times 53.5
$$

$$
=107.0 \mathrm{gm}
$$

4. At $30^{\circ} \mathrm{C}$, the half life for the decomposition of AB_{2} is 200 s and is independent of the initial concentration of $A B_{2}$. The time required for 80% of the $A B_{2}$ to decompose is Given: $\log 2=0.34$
$\log 3=0.48$
(A) 200 s
(B) 323 s
(C) 467 s
(D) 532 s

Sol. C

$\mathrm{AB}_{2} \longrightarrow \mathrm{t}_{1 / 2} \quad=200 \mathrm{sec}$
$\mathrm{T}_{1 / 2}$ is independent of the initial concentration of AB_{2}, it means the order of reaction is one.
For first order reaction-
$\mathrm{K}=\frac{0.693}{t_{1 / 2}}=\frac{2.303}{t} \log \frac{a}{a-x}$
$\frac{0.693}{200}=\frac{2.303}{t} \log \frac{a}{\frac{20}{100} a}$
$\frac{0.693}{200}=\frac{2.303}{t} \log \frac{100}{20}$
$\frac{0.693}{200}=\frac{2.303}{t} \log 5$
$\mathrm{t}=\frac{2.303 \times 0.7}{0.693} \times 200 \because \log 5 \approx 0.7$
$=465.25$
$\approx 465 \mathrm{sec}$
5. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : Finest gold is red in colour, as the size of the particles increases, it appears purple then blue and finally gold.
Reason R: The colour of the colloidal solution depends on the wavelength of light scattered by the dispersed particles.
In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Both A and R are true and R is the correct explanation of A.
(B) Both A and R are true but R is NOT the correct explanation of A .
$\begin{array}{ll}\text { (C) } A \text { is true but } R \text { is false. } & \text { (D) } A \text { is false but } R \text { is true. }\end{array}$
Sol. A
\because The colour of colloidal particles depends upon the size of particles.
Larger particles absorb the light of longer wavelength and therefore transmit light of shorter wavelength.
6. The metal that has very low melting point and its periodic position is closer to a metalloid is
(A) Al
(B) Ga
(C) Se
(D) In

Sol. B
Ga have low M.P. and it is closer to metalloid in P.T.
7. The metal that is not extracted from its sulfide ore is
(A) Aluminium
(B) Iron
(C) Lead
(D) Zinc

Sol. A
Al is not obtained from sulphide ore
8. The products obtained from a reaction of hydrogen peroxide and acidified potassium permanganate are
(A) $\mathrm{Mn}^{4+}, \mathrm{H}_{2} \mathrm{O}$ only
(B) $\mathrm{Mn}^{2+}, \mathrm{H}_{2} \mathrm{O}$ only
(C) $\mathrm{Mn}^{4+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$ only
(D) $\mathrm{Mn}_{2}+, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$ only

Sol. D
$2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$
9. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A: LiF is sparingly soluble in water.
Reason \mathbf{R} : The ionic radius of Li^{+}ion is smallest among its group members, hence has least hydration enthalpy.
In the light of the above statements, choose the most appropriate answer from the option given below.
(A) Both A and R are true and R is the correct explanation of A.
(B) Both A and R are true but R is NOT the correct explanation of A .
(C) A is true but R is false.
(D) A is false but R is true.

Sol. C

Due to high lattice energy LiF is less soluble.
$\rightarrow \mathrm{Li}^{+}$has small size so it's has very high hydroation energy
10. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : Boric acid is a weak acid.
Reason \mathbf{R} : Boric acid is not able to release H^{+}ion on its own. It receives OH^{-}ion from water and release H^{+}ion.
In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Both A and R are correct and R is the correct explanation of A.
(B) Both A and R are correct but R is NOT the correct explanation of A .
(C) A is correct but R is not correct.
(D) A is not correct but R is correct.

Sol. A
It is a weak mono basic acid soluble in water and in aqueous solution the boron atom completes it's octect by accepting OH^{-}ion from water molecules.
$\mathrm{B}(\mathrm{OH})_{3(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
11. The metal complex that is diamagnetic is (Atomic number: $\mathrm{Fe}, 26 ; \mathrm{Cu}, 29$)
(A) $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(B) $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(C) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]$
(D) $\mathrm{K}_{4}\left[\mathrm{FeCl}_{6}\right]$

Sol. A

Coordination Compound

(A) $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(B) $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(C) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]$
(D) $\mathrm{K}_{4}\left[\mathrm{FeCl}_{6}\right]$

O.S.

Cu^{+1}
Cu^{+2}
Fe^{+1}
Fe^{+2}

Magnetic Behaviour

dia
Para
Para
Para
12. Match List - I with List - II

List - I Pollutant	List - II Source
A. Microorganisms	I. Strip mining
B. Plant nutrients	II. Domestic sewage
C. Toxic heavy metals	III. Chemical fertilizer
D. Sediment	IV. Chemical factory

Choose the correct answer from the options given below:
(A) A-II, B-III, C-IV, D-I
(B) A-II, B-I, C-IV, D-III
(C) A-I, B-IV, C-II, D-III
(D) A-I, B-IV, C-III, D-II

Sol. A
A. Microorganisms \rightarrow Domestic sewage
B. Plant nutrients \rightarrow Chemical fertilizer
C. Toxic heavy metals \rightarrow Chemical factory
D. Sediment \rightarrow Strip mining
13. The correct decreasing order of priority of functional groups in naming an organic compound as per IUPAC system of nomenclature is
(A) $-\mathrm{COOH}>-\mathrm{CONH}_{2}>-\mathrm{COCl}>-\mathrm{CHO}$
(B) $-\mathrm{SO}_{3} \mathrm{H}>-\mathrm{COCl}>-\mathrm{CONH}_{2}>-\mathrm{CN}$
(C) $-\mathrm{COOR}>-\mathrm{COCl}>-\mathrm{NH}_{2} \gg \mathrm{C}=0$
(D) $-\mathrm{COOH}>-\mathrm{COOR}>-\mathrm{CONH}_{2}>-\mathrm{COCl}$

Sol. B

14. Which of the following is not an example of benzenoid compound?
(A)

(B)

(C)

(D)

Sol. B
15. Hydrolysis of which compound will give carbolic acid?
(A) Cumene
(B) Benzenediazonium chloride
(C) Benzal chloride
(D) Ethylene glycol ketal

Sol. B

16.

[Et is $-\mathrm{C}_{2} \mathrm{H}_{5}$]
Consider the above reaction and predict the major product.
$(A) \mathrm{OHC}-\mathrm{H}_{2} \mathrm{C} \longrightarrow-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(B)

(C)

(D) $\mathrm{OHC}-\mathrm{H}_{2} \mathrm{C} \longrightarrow-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHOOH}$

Sol. A

17. The correct sequential order of the reagents for the given reaction is

(A) $\mathrm{HNO}_{2}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{HNO}_{2}, \mathrm{KI}, \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(B) $\mathrm{HNO}_{2}, \mathrm{KI}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{HNO}_{2}, \mathrm{H}_{2} \mathrm{O} /$ warm
(C) $\mathrm{HNO}_{2}, \mathrm{KI}, \mathrm{HNO}_{2}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(D) $\mathrm{HNO}_{2}, \mathrm{Fe} / \mathrm{H}^{+}, \mathrm{KI}, \mathrm{HNO}_{2}, \mathrm{H}_{2} \mathrm{O} /$ warm

Sol. B

18. Vulcanization of rubber is carried out by heating a mixture of
(A) Isoprene and styrene
(B) Neoprene and Sulphur
(C) Isoprene and Sulphur
(D) Neoprene and styrene

Sol. C

Isoprene and sulphur
19. Animal starch is the other name of
(A) Amylose
(B) Maltose
(C) Glycogen
(D) Amylopectin

Sol. C

Glycogen
20. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Phenolphthalein is a pH dependent indicator, remains colourless in acidic solution and gives pink colour in basic medium.
Reason R : Phenolphthalein is a weak acid. It doesn't dissociate in basic medium.
In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Both A and R are true and R is the correct explanation of A .
(B) Both A and R are true but R is NOT the correct explanation of A.
(C) A is true but R is false.
(D) A is false but R is true.

Sol. C

A is true but R is false
\because Phenolphthalein is weak acidic in nature.
It dissociates in basic medium and gives pink colour.
$\mathrm{HIn}+\mathrm{OH}^{-} \rightleftharpoons \quad \mathrm{ln}^{-}+\mathrm{H}_{2} \mathrm{O}$
Colourless Pink

SECTION - B

21. A 10 g mixture of hydrogen and helium is contained in a vessel of capacity $0.0125 \mathrm{~m}^{3}$ at 6 bar and $27^{\circ} \mathrm{C}$. The mass of helium in the mixture is \qquad g. (nearest integer)

Given : $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(Atomic masses of H and He are 1 u and 4 u , respectively)
Sol. 8
Mass of mixture $\quad=10 \mathrm{~g}=\mathrm{H} 2+\mathrm{He}$
Volume of container $=0.0125 \mathrm{~m}^{3}$

$$
=12.5 \mathrm{l}
$$

$\mathrm{P}=6 \mathrm{bar}=5.922 \mathrm{~atm}$
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\mathrm{PV}=\mathrm{nRT}$
Total mole (n) $\quad=\frac{P V}{R T}=\frac{5.922 \times 12.5 \times 101.33}{8.314 \times 300} \quad \because 1 \mathrm{l}$-atm $=101.33 \mathrm{~J}$

$$
=3.01 \approx 3 \text { mole }
$$

Let mass of H_{2} in mixture $=\mathrm{xgm}$
Mass of He

$$
=(10-x) \mathrm{gm}
$$

Mole of H_{2}

$$
=\frac{x}{2}
$$

Mole of He

$$
=\frac{10-x}{4}
$$

Total mole $\quad=\frac{x}{2}+\frac{10-x}{4}=3$

$$
\begin{aligned}
& 2 x+10-x=12 \\
& X=2 g m
\end{aligned}
$$

Mass of H_{2}

$$
=2 \mathrm{~g}
$$

Mass of He

$$
\begin{aligned}
& =10-\mathrm{x} \\
& =8 \mathrm{gm}
\end{aligned}
$$

22. Consider an imaginary ion ${ }_{22}^{48} \mathrm{X}^{3-}$. The nucleus contains 'a'\% more neutrons than the number of electrons in the ion. The value of ' a ' is \qquad . [nearest integer]
Sol. 4

$$
{ }_{22}^{48} x^{3-} \Rightarrow \begin{gathered}
\text { no.of } e^{-}=22+3=25 \\
\text { no.of } n^{0}=48-22=26
\end{gathered}
$$

No. of neutron $=9 \%$ of no of $\mathrm{e}^{-}+$no. of e^{-}
$26=\left(\frac{a}{100} \times 25\right)+25$
$1=\frac{a}{4}$
$a=4$
23. For the reaction
$\mathrm{H}_{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
$\Delta U=-59.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $27^{\circ} \mathrm{C}$.
The enthalpy change for the above reaction is (-) \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ [nearest integer]
Given : $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
Sol. 57
$\mathrm{H}_{2} \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
$\Delta \mathrm{U}=-59.6 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{ng}_{\mathrm{g}}=2-1=1$
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ngRT}$
$=-59.6+1 \times 8.314 \times 300 \times 10^{-3}$
$=-59.6+(8.314 \times 0.3)$
$=-57.10 \mathrm{~kJ} / \mathrm{mol}$
$\approx-57 \mathrm{KJ} / \mathrm{mol}$
24. The elevation in boiling point for 1 molal solution of non-volatile solute A is 3 K . The depression in freezing point for 2 molal solution of A in the same solvent is 6 K . The ratio of K_{b} and K_{f} i.e., $\mathrm{K}_{\mathrm{b}} / \mathrm{K}_{f}$ is 1 : X . The value of X is [nearest integer]
Sol. 1
Molality $=1 \mathrm{~m} \quad$ molality $=2 \mathrm{~m}$
$\Delta \mathrm{T}_{\mathrm{b}}=3 \mathrm{k} \quad \Delta \mathrm{T}_{\mathrm{f}}=6 \mathrm{~K}$
\because Solvent is same
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{m}_{1} \quad \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}_{2}$
$\frac{\Delta T_{b}}{\Delta T_{f}}=\frac{K_{b}}{K_{f}} \times \frac{m_{1}}{m_{2}}$
$\frac{3}{6}=\frac{K_{b}}{K_{f}} \times \frac{1}{2}$
$\frac{K_{b}}{K_{f}}=\frac{1}{1}$
$\mathrm{K}_{\mathrm{b}}: \mathrm{K}_{\mathrm{f}}=1: 1$
$=1: \mathrm{X}$
So, $X=1$
25. 20 mL of 0.02 M hypo solution is used for the titration of 10 mL of copper sulphate solution, in the presence of excess of KI using starch as an indicator. The molarity of Cu^{2+} is found to be
\qquad $\times 10^{-2} \mathrm{M}$. [nearest integer]
Given: $2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}$
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$

Sol. 4

Hypo solution $=20 \mathrm{ml} \& 0.02 \mathrm{M}$
$\mathrm{CuSO}_{4} \mathrm{Sol}^{\mathrm{n}}=10 \mathrm{ml}$
$2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}$
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
Meq of hypo solution $=(\mathrm{M} \times \mathrm{V}) \times \mathrm{n}_{\mathrm{f}}$
$=20 \times 0.02 \times 1$
$=0.4$
Meq of hypo $=$ meq of $\mathrm{I}_{2}=0.4$
Meq of $\mathrm{CuSO}_{4}=0.4$
Moles of $\mathrm{CuSO}_{4}=\mathrm{Meq} \times \mathrm{nf}_{\mathrm{f}}$
$=0.4 \times 1$
$=0.4 \mathrm{~mol}$.
Molarity $=\frac{\text { mol }}{\text { volume }}=\frac{0.4}{10}$
$=0.04 \mathrm{M}$
$=4 \times 10^{-2} \mathrm{M}$
26. The number of non-ionisable protons present in the product B obtained from the following reactions is \qquad
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{PCl}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{A}$
$\mathrm{A}+\mathrm{PCl}_{3} \rightarrow \mathrm{~B}$
Sol. 2
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{PCl}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{H}_{3} \mathrm{PO}_{3}$
$\mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{PCl}_{3} \rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{HCl}$

27. The spin only magnetic moment value of the compound with strongest oxidizing ability among $\mathrm{MnF}_{4}, \mathrm{MnF}_{3}$ and MnF_{2} is \qquad B. M. [nearest integer]

Sol. 5

The change from Mn2+ to Mn3+ results in the half-Filled (d5) configuration which has extra stability.
$\mathrm{MnF} 3 \rightarrow$ most oxising agent
$\mathrm{Mn}^{+3} \rightarrow 3 \mathrm{~d}^{4}$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{4 \times 6}=\sqrt{24}=5$
28. Total number of isomers (including stereoisomers) obtained on monochlorination of methyl cyclohexane is \qquad -.

Sol. 12s

Cis

trans
29. A 100 mL solution of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$ on treatment with methanol produces 2.24 mL of a gas at STP. The weight of gas produced is \qquad mg. [nearest integer]
Sol. 3
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}(\mathrm{~g})$
2.24 ml

Mole of ethane $=\frac{2.24}{22400}$
$=10^{-4}$ mole
Mass of ethane $=10-4 \times 30$
$=3 \times 10^{-3} \mathrm{gm}$
$=3 \mathrm{mg}$
30. How many of the following drug is/are example(s) of broad spectrum antibiotics?

Ofloxacin, Penicillin G, Terpinerol, Salvarsan.
Sol. 1
Ofloxacin

