CHEMISTRY
 JEE-MAIN (July-Attempt)
 26 July (Shift-1) Paper Solution

SECTION - A

1. Match List - I with List - II.

List - I
(Compound)
List - II
(Shape)
(I) bent
(II) square pyramidal
(III) trigonal bipyramidal
(IV) octahedral
(A) BrF_{5}
(B) $\left[\mathrm{CrF}_{6}\right]^{3-}$
(C) O_{3}
(D) PCl_{5}

Question: Choose the correct answer from the options given below:
(A) (A)-(I),(B)-(II),(C)-(III),(D)-(IV)
(B) (A)-(IV),(B)-(III),(C)-(II),(D)-(I)
(C) (A)-(II),(B)-(IV),(C)-(I),(D)-(III)
(D) (A)-(III),(B)-(IV),(C)-(II),(D)-(I)

Sol. C

(A)

$\mathrm{sp}^{3} \mathrm{~d}^{2}$ (square Pyramidal)
(C)

sp^{2} (Bent)
(B)

(D)

$\mathrm{sp}^{3} \mathrm{~d}$ (T.B.P)
(A)-(II),(B)-(IV),(C)-(I),(D)-(III)
2. Match List - I with List - II.

List - I

(Processes/Reactions)
(A) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(B) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

List - II
(Catalyst)
(C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(I) $\mathrm{Fe}(\mathrm{s})$
(D) Vegetable oil (l) $+\mathrm{H}_{2} \rightarrow$ Vegetable ghee(s)
(II) $\operatorname{Pt}(\mathrm{s})-\mathrm{Rh}(\mathrm{s})$

Choose the correct answer from the options given below :
(A) (A)-(III),(B)-(I),(C)-(II),(D)-(IV)
(B) (A)-(III),(B)-(II),(C)-(I),(D)-(IV)
(C) (A)-(IV),(B)-(III),(C)-(I),(D)-(II)
(D) (A)-(IV),(B)-(II),(C)-(II),(D)-(I)

Sol. B
Fact
3. Given two statements below:

Statement I: In Cl_{2} molecule the covalent radius is double of the atomic radius of chlorine.
Statement II : Radius of anionic species is always greater than their parent atomic radius.
Choose the most appropriate answer from options given below :
(A) Both Statement I and Statement II are correct.
(B) Both Statement I and Statement II are incorrect.
(C) Statement I is correct but Statement II is incorrect.
(D) Statement I is incorrect but Statement II is correct.

Sol. D

Radius of Anionic species is always greater than their parent atomic Radius but it can not say that covalent radius is double of the atomic radius.
4. Refining using liquation method is the most suitable for metals with :
(A) Low melting point
(B) High boiling point
(C) High electrical conductivity
(D) Less tendency to be soluble in melts than impurities

Sol. A

Fact
5. Which of the following can be used to prevent the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$?
(A) Urea
(B) Formaldehyde
(C) Formic acid
(D) Ethanol

Sol. A
Fact
6. Reaction of BeCl_{2} with LiAlH_{4} gives:
(A) AlCl_{3}
(B) BeH_{2}
(C) LiH
(D) LiCl
(E) BeAlH_{4}

Choose the correct answer from options given below:
(A) (A), (D) and (E)
(B) (A), (B) and (D)
(C) (D) and (E)
(D) (B), (C) and (D)

Sol. B
BeH_{2} can not be formed direct reaction of Be and H_{2} so it is prepeared by reaction of BeCl_{2} and LiAlH_{4}
$2 \mathrm{BeCl}_{2}+\mathrm{LiAlH}_{4} \rightarrow 2 \mathrm{BeH}_{2}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
7. Borazine, also known as inorganic benzene, can be prepared by the reaction of 3-equivalents of " X " with 6-equivalents of " Y ". " X " and " Y ", respectively are :
(A) $\mathrm{B}(\mathrm{OH})_{3}$ and NH_{3}
(B) $\mathrm{B}_{2} \mathrm{H}_{6}$ and NH_{3}
(C) $\mathrm{B}_{2} \mathrm{H}_{6}$ and HN_{3}
(D) NH_{3} and $\mathrm{B}_{2} \mathrm{O}_{3}$

Sol. B

$$
3 \mathrm{~B}_{2} \mathrm{H}_{6}+\underset{\text { excess }}{6 \mathrm{NH}_{3}} \stackrel{\text { hightemp }}{-} 2 \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}+12 \mathrm{H}_{2}
$$

8. Which of the given reactions is not an example of disproportionation reaction ?
(A) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(B) $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2}$
(C) $\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(D) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Sol. C
In disproportionation reaction same element is simultaneously oxidized or reduced

\Rightarrow Above reactions are disproportionation while following reaction is not.

9. The dark purple colour of KMnO_{4} disappears in the titration with oxalic acid in acidic medium. The overall change in the oxidation number of manganese in the reaction is :
(A) 5
(B) 1
(C) 7
(D) 2

Sol. A
KMnO_{4} act as oxidizing agent. It oxidises oxalic acid to CO_{2} and itself changes to Mn^{2+} Ion which is colourless
KMnO_{4}
\downarrow

$(+7)$$\quad$| Mn^{2+} |
| :--- |
| \downarrow |
| $(+2)$ |

Change in oxidation no. $=5$
10. $\dot{\mathrm{Cl}}+\mathrm{CH}_{4} \rightarrow \mathrm{~A}+\mathrm{B}$
A and B in the above atmospheric reaction step are :
(A) $\mathrm{C}_{2} \mathrm{H}_{6}$ and Cl_{2}
(B) $\dot{\mathrm{C}} \mathrm{Cl}_{2}$ and H_{2}
(C) $\stackrel{\dot{\mathrm{C}}}{\mathrm{C}} 3$ and HCl
(D) $\mathrm{C}_{2} \mathrm{H}_{6}$ and HCl

Sol. C

$\dot{\mathrm{Cl}}+\mathrm{CH}_{4} \rightarrow \mathrm{HCl}+\dot{\mathrm{C}} \mathrm{H}_{3}$
11. Which technique among the following, is most appropriate in separation of a mixture of 100 mg of p-nitrophenol and picric acid?
(A) Steam distillation
(B) 2-5 ft long column of silica gel
(C) Sublimation
(D) Preparative TLC (Thin Layer Chromatography)

Sol. D

Shows inter molecular H -bonding

12. The difference in the reaction of phenol with bromine in chloroform and bromine in water medium is due to :
(A) Hyperconjugation in substrate
(B) Polarity of solvent
(C) Free radical formation
(D) Electromeric effect the substrate

Sol. B

The difference in the reaction due to polarity of solvent.
13. Which of the following compounds is not aromatic?
(A)

(B)

(C)

(D)

Sol. C

is non polar due to repulsion between hydrogen atom.
14. The products formed in the following reaction A and B are

(A) $\mathrm{A}=$

(B) $\mathrm{A}=$

(C) $\mathrm{A}=$

B =

(D) $\mathrm{A}=$

Sol. C

15. Which reactant will give the following alcohol on reaction with one mole of phenyl magnesium bromide (PhMgBr) followed by acidic hydrolysis

(A) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$
(B) $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{N}$
(C) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{O}-\mathrm{Ph}$
(D) $\mathrm{Ph}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}$

Sol. D

16. The major product of the following reaction is

(A)

(B)

(C)

(D)

Sol. A

17. The correct stability order of the following diazonium slat is
(A)

(B)

(C)

(D)

(A) (A) $>$ (B) $>$ (C) $>$ (D)
(B) (A) $>$ (C) $>$ (D) $>$ (B)
(C) $($ C $)>($ A $)>($ D $)>($ B $)$
(D) (C) $>$ (D) $>$ (B) $>$ (A)

Sol. B
(A)

(B)

-M
(C)

(D)

- M

18. Stearic acid and polyethylene glycol react to form which one of the following soap/s detergents?
(A) Cationic detergent
(B) Soap
(C) Anionic detergent
(D) Non-ionic detergent

Sol. D
$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}+\mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Stearic acid Polyethylene glycol

$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Non-Ionic detergent
19. Which of the following is a reducing sugar?
(A)

(B)

(C)

(D)

Sol. A
In which -OH group is present on anomeric carbon act as a reducign sugar.
20. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A) : Experimental reaction of $\mathrm{CH}_{3} \mathrm{Cl}$ with aniline and anhydrous AlCl_{3} does not give o and p-methylaniline.
Reason (R): The $-\mathrm{NH}_{2}$ group of aniline becomes deactivating because of salt formation with anhydrous AlCl_{3} and hence yields m-methyl aniline as the product.
In the light of the above statements, choose the most appropriate answer from the options given below :
(A) Both (A) and (R) are true and (R) is the correct explanation of (A).
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(C) (A) is true, but (R) is false.
(D) (A) is false, but (\mathbf{R}) is true.

Sol. C

21. Chlorophyll extracted from the crushed green leaves was dissolved in water to make 2 L solution of Mg of concentration 48ppm. The number of atoms of Mg in this solution is $\mathrm{x} \times 10^{20}$ atoms. The value of x is \qquad (Nearest Integer)
(Given: Atomic mass of Mg is $24 \mathrm{~g} \mathrm{~mol}^{-1}$; $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$)
Sol. 24
$\because \mathrm{d}_{\text {solution }} \approx 1 \mathrm{gm} / \mathrm{ml}$
Volume of solution $=2 \mathrm{~L}=2000 \mathrm{ml}$
Mass of solution $=2000 \mathrm{gm}$
$\mathrm{ppm}=\frac{\text { mass of solute }}{\text { mass of solution }} \times 10^{6}$
$48=\frac{\text { mass of } \mathrm{Mg}}{2000} \times 10^{6}$
$48 \times 2 \times 10^{-3}=$ mass of Mg
Mole of $\mathrm{Mg}=\frac{48 \times 2 \times 10^{-3}}{24}$
$=4 \times 10^{-3} \mathrm{~mol}$
No. of Mg -atoms
$=$ mole $\times \mathrm{N}_{\mathrm{A}}$
$=4 \times 10^{-3} \times 6.02 \times 10^{23}$
$=24.08 \times 10^{20}$
$=\mathrm{x} \times 10^{20}$
$x=24$
22. A mixture of hydrogen and oxygen contains 40% by hydrogen by mass when then pressure is
2.2 bar. The partial pressure of hydrogen is \qquad bar. (Nearest Integer)
Sol. 8
$\mathrm{H}_{2}+\mathrm{O}_{2}$
\downarrow
40% by mass
Let mass of mixture $=100 \mathrm{gm}$
Mass of $\mathrm{H}_{2}=40 \mathrm{gm}$
Mass of $\mathrm{O}_{2}=60 \mathrm{gm}$
Mole of $\mathrm{H}_{2}=\frac{40}{2}=20 \mathrm{~mol}$
Mole of $\mathrm{O}_{2}=\frac{60}{32} \mathrm{~mol}=\frac{15}{8} \mathrm{~mol}$
Partial pressure of H_{2}
$=\frac{n_{H_{2}}}{n_{H_{2}+{ }^{n} O_{2}}} \times P_{\text {total }}$
$=\frac{20}{20+\frac{15}{8}} \times 2.2$
$=\left(\frac{20 \times 8}{160+15}\right) \times 2.2$
$=\frac{160 \times 2.2}{175}$
$=\frac{352}{175}=2.011 \approx 2 \mathrm{bar}$
23. The wavelength of an electron and a neutron will become equal when the velocity of the electron is x times the velocity of neutron. The value of x is (Nearest Integer)
(Mass of electron is $9.1 \times 10^{-31} \mathrm{~kg}$ and mass of neutron is $1.6 \times 10^{-27} \mathrm{~kg}$)
Sol. 176
$\lambda_{e^{-}}=\frac{h}{m_{e} v_{n}} \lambda_{n}=\frac{h}{m_{n} v_{n}}$
If $V_{e}=x V_{n}$
then $\lambda_{e}=\lambda_{n}$
$\frac{h}{m_{e} v_{e}}=\frac{h}{m_{n} v_{n}}$
$\frac{h}{m_{e} \times x v_{n}}=\frac{h}{m_{n} v_{n}}$
$\mathrm{X}=\frac{m_{n}}{m_{e}}=\frac{1.6 \times 10^{-27}}{9.1 \times 10^{-31}}$
$=175.82$
≈ 176
24. 2.4 g coal is brunt in a bomb calorimeter in excess of oxygen at 298 K and 1 atm pressure. The temprature of the calorimeter rises from 298 K to 300 K . The enthalpy change during the combustion of coal is $-x \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of x is \qquad (Nearest Integer)

Sol. 200

$\Delta \mathrm{T}=2 \mathrm{~K}$
$\Delta \mathrm{H}=-\mathrm{x} \mathrm{KJ} /$ mole
Coal $\rightarrow 2.4 \mathrm{gm} \Rightarrow \frac{2.4}{12}$
$=0.2$ mole
$\Delta \mathrm{H}$ for 0.2 mole
$=0.2 \times(-\mathrm{x}) \mathrm{KJ}$
$=-0.2 \times \mathrm{KJ}$
$q_{\text {cal }}=\mathrm{C} \Delta \mathrm{T}$
$0.2 \mathrm{x}=20 \times 2=40 \mathrm{KJ}$
$X=\frac{40}{0.2}=200 \quad \because q_{\text {cal }}=-\Delta H$
25. When 800 mL of 0.5 M nitic acid is heated in a beaker, its volume is reduced to half and 11.5 g of nitric acid is evaporated. The molarity of the remaining nitric acid solution is $\mathrm{x} \times 10^{-2} \mathrm{M}$. (Nearest Integer)
Sol. 54
800 ml of 0.5 M nitric acid
M moles of nitric acid
$=\mathrm{V} \times \mathrm{M}$
$=800 \times 0.5$
$=400 \mathrm{~m} \mathrm{~mol}$
Mass of Nitric acid before heating
$=400 \times 10^{-3} \times 63$
$=25.2 \mathrm{gm}$
Mass of nitric acid after heating
= 25.2-11.5
$=13.7 \mathrm{gm}$
Volume of solution after heating
$=\frac{800}{2}=400 \mathrm{ml}$
$\mathrm{M}_{\text {final }}=\frac{\text { mole }}{V_{\text {solution }}}$
$=\frac{13.7 / 63}{400} \times 1000$
$=0.54365$
$=54.365 \times 10^{-2}$
$=\mathrm{x} \times 10^{-2}$
$x \approx 54$
26. At 298 K , the equilibrium constant is 2×10^{15} for the reaction:
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
The equilibrium constant for the reaction
$\frac{1}{2} \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s}) \rightleftharpoons \frac{1}{2} \mathrm{Cu}(\mathrm{s})+\mathrm{Ag}^{+}(\mathrm{aq})$
Is $x \times 10^{-8}$. The value of x is (Nearest Integer)
Sol. 2
$\mathrm{Cu}(\mathrm{S})+2 \mathrm{Aq}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
$\mathrm{K}=2 \times 10^{15}$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s}) \rightleftharpoons \mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq})$
$\mathrm{K}^{\prime}=\frac{1}{K}=\frac{1}{2 \times 10^{15}}$
$\frac{1}{2} C u^{2+}(a q)+A g(s) \rightleftharpoons \frac{1}{2} C u(s)+A g^{+}(a q)$
$\mathrm{K}^{\prime \prime}=\left(\mathrm{K}^{\prime}\right)^{1 / 2}$
$=\left(\frac{1}{2 \times 10^{15}}\right)^{1 / 2}$
$=\left(5 \times 10^{-16}\right)^{1 / 2}$
$=\sqrt{5} \times 10^{-8}$
$=2.23 \times 10^{-8}$
$=\mathrm{x} \times 10^{-8}$
$x \approx 2$
27. The amount of charge in F (Faraday) required to obtain one mole of iron from $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is \qquad (Nearest Integer)
Sol. 8
$\mathrm{Fe}_{3} \mathrm{O}_{4} \longrightarrow$ one mole Fe
Oxidation No. of Iron in $\mathrm{Fe}_{3} \mathrm{O}_{4}=+\frac{8}{3}$
For 1 mole $\mathrm{Fe},\left(\frac{8}{3} \times 3\right)$ mole of e^{-}are required.
Charge of one mole $\mathrm{e}^{-}=1 \mathrm{~F}$
So, change of $\left(\frac{8}{3} \times 3\right)$ mole of $\mathrm{e}^{-}=\frac{8}{3} \times 3 F=8 \mathrm{~F}$
$=8 \mathrm{~F}$
28. For a reaction $A \rightarrow 2 B+C$ the half lives are $100 s$ and $50 s$ when the concentration of reactant A is 0.5 and $1.0 \mathrm{~mol} L^{-1}$ respectively. The order of the reaction is \qquad (Nearest Integer)
Sol. 2
A $\rightarrow 2 \mathrm{~B}+\mathrm{C}$
$\mathrm{T}_{1 / 2}=100 \mathrm{~s}[\mathrm{~A}]=0.5 \mathrm{M}$
$\mathrm{T}_{1 / 2}=50 \mathrm{~s}[\mathrm{~A}]=1 \mathrm{M}$
$\mathrm{T}_{1 / 2} \propto \frac{1}{\left[C_{0}\right]^{n-1}}$
$\frac{\left(t_{1 / 2}\right)_{1}}{\left(t_{1 / 2}\right)_{2}}=\frac{[C o]_{2}^{n-1}}{[C o]_{1}^{n-1}}$
$\frac{100}{50}=\left(\frac{1}{0.5}\right)^{n-1}$
$(2)^{1}=(2)^{\mathrm{n}-1}$
$\mathrm{n}-1=1$
$n=2$ order $=2$
29. The difference between spin only magnetic moment value of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is \qquad (Nearest Integer)
Sol. 0
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} \rightarrow \mathrm{t}_{2} \mathrm{~g}^{5} \mathrm{eg}^{2}$
$\mu=\sqrt{3(3+2)}=\sqrt{15}=3.87$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} \rightarrow \mathrm{t}_{2} \mathrm{~g}^{3} \mathrm{eg}^{2}$
$\mu=\sqrt{3(3+2)}=\sqrt{15}=3.87$
30. In the presence of sunlight, benzene reacts with $C l_{2}$ to give product X; The number of hydrogens in X is \qquad . (Nearest Integer)

Sol. 6

(BHC)

