CHEMISTRY
 JEE-MAIN (July-Attempt)
 25 July (Shift-2) Paper Solution

SECTION - A

1. Match List I with List II :

List I (molecule)	List II (hybridization ; shape)
A. XeO_{3}	I.sp ${ }^{3} \mathrm{~d} ;$ linear
B. XeF_{2}	II. $\mathrm{Sp}^{3} ;$ pyramidal
C. XeOF_{4}	III. $\mathrm{Sp}^{3} \mathrm{~d}^{3} ;$ distorted octahedral
D. XeF_{6}	IV. $\mathrm{Sp}^{3} \mathrm{~d}^{2} ;$ square pyramidal

Choose the correct answer from the option given below:
(A) A-II, B-I, C-IV, D-III
(B) A-II, B-IV, C-III, D-I
(C) A-IV, B-II, C-III, D-I
(D) A-IV, B-II, C-I, D-III

Sol. A
(A)

(B)

(C)

$\mathrm{Sp}^{3} \mathrm{~d}^{2}$,
Sp3, pyramidal

> Sp³d, Linear
(square pyramidal)
(D)

$S p^{3} d^{3}$,
(distorted octahedral)
2. Two solutions A and B are prepared by dissolving 1 g of non-volatile solutes X and Y , respectively in 1 kg of water. THe ratio of depression in freezing points for A and B is found to be 1:4. The ratio of molar masses of X and Y is
(A) $1: 4$
(B) 1:0.25
(C) 1:0.20
(D) $1: 5$

Sol. B
$\frac{\left(\Delta T_{f}\right)_{A}}{\left(\Delta T_{f}\right)_{B}}=\frac{K_{f} \cdot m_{A}}{K_{f} m_{B}}=\frac{M_{B}}{M_{A}}=\frac{1}{4}$
$\frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{B}}}=4$
3. $\quad \mathrm{K}_{\mathrm{a}_{1}}, \mathrm{~K}_{\mathrm{a}_{2}}$ and $\mathrm{K}_{\mathrm{a}_{3}}$ are the respective ionization constants for the following reactions (a),(b) and(c).
(a) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
(b) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}=\mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{2-}$
(c) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

The relationship between $K_{a 1}, K_{a 2}$ and $K_{a 3}$ is given as
(A) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}}+\mathrm{K}_{\mathrm{a}_{2}}$
(B) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}}-\mathrm{K}_{\mathrm{a}_{2}}$
(C) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}} / \mathrm{K}_{\mathrm{a}_{2}}$
(D) $\mathrm{K}_{\mathrm{a}_{3}}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}$

Sol. D
On adding two reactions equilibrium constant gets multiplied.
4. The molar conductivity of a conductivity cell filled with 10 moles of 20 mL NaCl solution is $\Lambda_{\mathrm{m} 1}$ and that of 20 moles another identical cell heaving 80 mL NaCl solution is $\Lambda_{\mathrm{m} 2}$. The conductivities exhibited by these two cells are same.
The relationship between $\Lambda_{\mathrm{m} 2}$ and $\Lambda_{\mathrm{m} 1}$ is
(A) $\Lambda_{\mathrm{m} 2}=2 \Lambda_{\mathrm{m} 1}$
(B) $\Lambda_{\mathrm{m} 2}=\Lambda_{\mathrm{m} 1} / 2$
(C) $\Lambda_{\mathrm{m} 2}=\Lambda_{\mathrm{m} 1}$
(D) $\Lambda_{\mathrm{m} 2}=4 \Lambda_{\mathrm{m} 1}$

Sol. A
$\Lambda_{\mathrm{m} 1}=\frac{\mathrm{K} \times 1000}{\mathrm{M}}$
$\Lambda_{\mathrm{m} 1}=\frac{\mathrm{K} \times 1000}{\frac{10 \times 10^{3}}{20}}=2 \mathrm{~K}$
$\Lambda_{\mathrm{m} 2}=\frac{\mathrm{K} \times 1000}{20 \times 10^{+3} / 80}=4 \mathrm{~K}$
$\frac{\Lambda_{\mathrm{m} 1}}{\Lambda_{\mathrm{m} 2}}=\frac{2 \mathrm{~K}}{4 \mathrm{~K}}=\frac{1}{2}$
$2 \Lambda_{\mathrm{m} 1}=\Lambda_{\mathrm{m} 2}$
5. For micelle formation, which of the followiong statements are correct?
A. Micelle formations is an exothermic process.
B. Micelle formations is an endothermic process
C. The entropy change is positive
D. The entropy change is negative.
(A) A and D only
(B) A and C only
(C) B and C only
(D) B and D only

Sol. A
Micelle formation is exothermic.
$\Delta S>0$ - Spontaneous Process.
6. The first ionization enthalpies of $\mathrm{Be}, \mathrm{B}, \mathrm{N}$ and O follow the order
(A) $\mathrm{O}<\mathrm{N}<\mathrm{B}<\mathrm{Be}$
(B) $\mathrm{Be}<\mathrm{B}<\mathrm{N}<0$
(C) $\mathrm{B}<\mathrm{Be}<\mathrm{N}<0$
(D) $\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}$

Sol. D
(1) IE of Be is more than B due to stable full filled 2s-orbital
(2) IE of N is more than O due to more stable half filled 2 p -orbital
7. Given below are two statements.

Statement I : Pig iron is obtained by heating cast iron with scrap iron.
Statement II : Pig iron has a relatively lower carbon content than that of cast iron.
In the light of the above statements, choose the ocrrect answer from the options
(A) Both Statement I and Statement II
(B) Both Statement I and Statement II are not correct
(C) Statement I is correct but Statement II is not correct.
(D) Statement I is not correct but Statement II is correct

Sol. B

Cast iron has slightly lower carbon content (about 3\%) Cast iron is made by melling pig iron with scrap iron and CoKe using hot air blast
8. High purity ($>99.5 \%$) dihydrogen is obtained by
(A) reaction zine with aqueous alkali
(B) electrolysis of acidified water using platinum electrodes.
(C) electrolysis of warm aqueous barium hydroxide solution between nickel
(D) reaction of zine with dilute acid.

Sol. C
Fact (NCERT Based)
9. The correct order of density is
(A) $\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}>\mathrm{Sr}$
(B) $\mathrm{Sr}>\mathrm{Ca}>\mathrm{Mg}>\mathrm{Be}$
(C) $\mathrm{Sr}>\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}$
(D) $\mathrm{Be}>\mathrm{Sr}>\mathrm{Mg}>\mathrm{Ca}$

Sol. C
Order of density $\mathrm{Ca}<\mathrm{Mg}<\mathrm{Be}<\mathrm{Sr}<\mathrm{Ba}<\mathrm{Ra}$
Ca has lower denisty than Mg and Be due to large size
10. The total number of acidic oxides from the following list is
$\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{CO}, \mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
(A) 3
(B) 4
(C) 5
(D) 6

Sol. B
Acidic $\rightarrow \mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
Neutral $\rightarrow \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{CO}$
11. The correct order of energy of absorption for the following metal complexes is A : $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}, \mathrm{B}:\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)\right]^{2+}, \mathrm{C}:\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(A) $\mathrm{C}<\mathrm{B}<\mathrm{A}$
(B) $\mathrm{B}<\mathrm{C}<\mathrm{A}$
(C) $\mathrm{C}<\mathrm{A}<\mathrm{B}$
(D) $\mathrm{A}<\mathrm{C}<\mathrm{B}$

Sol. A
Absorption energy $\propto \Delta_{\mathrm{o}} \propto$ stregth of ligand
Strength of ligand $\rightarrow \mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<e n$
12. Match List I with List II.

List I	List II
A. Sulphate	I. Pesticide
B. Fluoride	II. Bending of bones
C. Nicotine	III. Laxative effect
D. Sodium arsinite	IV. Herbicide

Choose the correct answer from the options given below:
(A) A-II, B-III, C-IV, D-I
(B) A-IV, B-III, C-II, D-I
(C) A-III, B-II, C-I, D-IV
(D) A-III, B-II, C-IV, D-I

Sol. C
A. Sulphate \rightarrow Laxative effect
B. Fluoride \rightarrow Bending of bone
C. Nicotine \rightarrow Pesticide
D. Sodium arsinite \rightarrow Herbicide
13. Major product of the following reaction is

(A)

(B)

(C)

(D)

Sol. C

14. What is the major product of the following reation?

(A)

(B)

(C)

(D)

Sol. B

15. Arrange the following in decreasing acidic strength.

(A)

(B)

(C)

(D)
(A) $\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}$
(B) $\mathrm{B}>\mathrm{A}>\mathrm{C}>$ D
(C) $\mathrm{D}>\mathrm{C}>\mathrm{A}>\mathrm{B}$
(D) $\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$

Sol. A

A $>\mathrm{B}>\mathrm{C}>\mathrm{D}$
16. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CN} \underset{\text { Ether }}{\mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{A}_{-}^{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{B} \underset{\mathrm{HCl}}{\mathrm{Zn}-\mathrm{Hg}} \mathrm{C}$

The correct structure of C is
(A) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(B) $\underset{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{3}}{\mathrm{O}}$

(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

Sol. A

(B)
17. Match List I with List II :

List I Polymer	List II used for items
A. Nylon 6.6	I. Buckets
B. Low density polythene	II. Non-stick utensils
C. High density polythene	III. Bristles of brushes
D. Teflon	IV. Toys

Choose the correct answer from the options given below:
(A) A-III, B-I, C-IV, D-II
(B) A-III, B-IV, C-I, D-II
(C) A-II, B-I, C-IV, D-III
(D) A-II, B-IV,C-I,D-III

Sol. B
A. Nylon \rightarrow Bristles of brushes
B. Low density polythene \rightarrow Toys
C. High clensity polyethene \rightarrow Bucket
D. Teflon \rightarrow Non-stick utensils
18. Glycosidic linkage between C 1 of α-glucose and C 2 of β-fructose is found in
(A) maltose
(B) sucrose
(C) lactose
(D) amylose

Sol. B

19. Some drugs bind to a site other than the active site of an enzyme. This site is known as
(A) non-active site
(B) allosteric site
(C) competitive site
(D) therapeutic site

Sol. B

20. In base vs. acid titration, at the end point methyl orange is present as
(A) quinonoid form
(B) heterocyclic form
(C) phenolic form
(D) benzenoid form

Sol. A

21. 56.0 L of nitrogen gas is mixed with excess of hydrogen gas and it is found that 20 L of ammonia gas is produced. The volume of unused nitrogen gas is found to be \qquad L.

Sol. 46
$\underset{56 \mathrm{~L}}{\mathrm{~N}_{2} \mathrm{~g}}+\underset{\text { excess }}{3 \mathrm{H}_{2} \mathrm{~g}} \rightarrow 2 \mathrm{NH}_{3}$
Used $\mathrm{N}_{2}=10$ lit, unused $\mathrm{N}_{2}=46 \mathrm{~L}$
22. A sealed flask with a capacity of $2 \mathrm{dm}^{3}$ contains 11 g of propane gas. The flask is so weak that it will burst if the pressure becomes 2 MPa . The minimum temperature at which the flask will burst is \qquad ${ }^{\circ} \mathrm{C}$. [Nearest integer]
(Given: $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, Atomic masses of C and H are 12 u and 1 u , respectively)(Assume that propane behaves as an ideal gas.)
Sol. 1655
$\mathrm{Pv}=\mathrm{nRT}$
$2 \times 10^{6} \times 2 \times 10^{-3}=\frac{11}{44} \times 8.3 \times \mathrm{T}$
$\mathrm{T}=1927.7 \mathrm{~K}$
$\mathrm{T}=1654.7^{\circ} \mathrm{C}$
Ans 1655
23. When the excited electron of a H atom from $\mathrm{n}=5$ drops to the ground state, the maximum number of emission lines observed are \qquad .

Sol. 10
Number of emission line
$=\frac{\mathrm{n}(\mathrm{n}-1)}{2}=\frac{5 \times(5-1)}{2}=10$
24. While performing a thermodynamics experiment, a student made the following observations.
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-55.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ as calculated by the student is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$,(nearest integer)
Sol. 2
Ionisation energy of $\mathrm{CH}_{3} \mathrm{COOH}=57.3-55.3=2 \mathrm{KJ}$
25. For the decomposition of azomethane,
$\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{CH}_{3}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$, a first order reaction, the variation in partial pressure with time at 600 K is given as

The half life of the reaction is \qquad $\times 10^{-5}$ s. [Nearest integer]
Sol. 2
$\operatorname{IN} \frac{\mathrm{P}}{\mathrm{p}^{0}}=-\mathrm{kt}$
Slope $=-\mathrm{k}$
$\mathrm{K}=3.465 \times 10^{4}$
$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}=0.2 \times 10^{-4}=2 \times 10^{-5}$
26. The sum of number of lone pairs of electrons present on the central atoms of $\mathrm{XeO}_{3}, \mathrm{XeOF}_{4}$ and XeF_{6}, is \qquad
Sol. 3

lp on C.A. $=1$
Total $\mathrm{lp}=1+1+1=3$
27. The spin-only magnetic moment value of M^{3+} ion (in gaseous state) from the pairs $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}, \mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ and $\mathrm{Co}^{3+} / \mathrm{Co}^{2+}$ that has negative standard electrode potential, is \qquad B.M. [Nearest integer]

Sol. 4
SRP ($\mathrm{E}^{\circ} / \mathrm{V}$) $\mathrm{M}^{3+} / \mathrm{M}^{2+}$

	Ti	V	Cr	Mn	Fe	Co
$\mathrm{E}_{\mathrm{M}^{3+} / \mathrm{M}^{2+}}^{\mathrm{o}}$	-0.37	-0.26	-0.41	1.57	0.77	1.97
$\mathrm{Cr}^{3+}\left(3 \mathrm{~d}^{3}\right) \rightarrow \mu=\sqrt{3(3+2)}=\sqrt{15}=3.89=4$						

28. A sample of 4.5 mg of an unknown monohydric alcohol, R-OH was added to methylmagnesium iodide. A gas is evolved and is collected and its volume measured to be 3.1 mL . The molecular weight of the unknown alcohol is___g/mol. [Nearest integer]
Sol. 33 \& 35
$\mathrm{ROH}+\mathrm{CH}_{3} \mathrm{MgI} \rightarrow \mathrm{ROMgI}+\mathrm{CH}_{4}(\mathrm{~g})$
Assume T $=25^{\circ} \mathrm{C}$
Moles of $\mathrm{CH}_{4}=\frac{3.1}{24.47}=0.127 \mathrm{~mole}$
Moles of $\mathrm{ROH}=0.127$

$$
\frac{4.5}{\mathrm{M}}=0.127 \Rightarrow \mathrm{M} \simeq 35
$$

$\mathrm{T}=0^{\circ} \mathrm{C} \quad$ i.e. S.T.P. condition
Moles of $\mathrm{CH}_{4}=\frac{3.1}{22.4}=0.138$
$\frac{4.5}{\mathrm{M}}=0.138 \Rightarrow \mathrm{M}=32.6 \simeq 33$
29. The separation of two coloured substances was done by paper chromatography. The distances travelled by solvent front, substance A and B from the base line are $3.25 \mathrm{~cm}, 2.08 \mathrm{~cm}$ and 1.05 cm , respectively. The ratio of R_{f} values of A to B is \qquad _.

Sol. 2
$\mathrm{R}_{\mathrm{f}}(\mathrm{A})=\frac{2.08}{3.25}=0.64$
$R_{f}(B)=\frac{1.05}{3.25}=0.32$
$R_{f}(A): R_{f}(B)=2: 1$
30. The total number of monobromo derivatives formed by the alkanes with molecular formula $\mathrm{C}_{5} \mathrm{H}_{12}$ is (excluding stereo isomers) \qquad .

Sol. 8

