CHEMISTRY
 JEE-MAIN (July-Attempt)
 25 July (Shift-1) Paper Solution

(SECTION - A)

1. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ on reaction with excess of water results into acidic mixture
$\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
16 moles of NaOH is required for the complete neutralization of the resultant acidic mixture. The number of moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ used is:
(A) 16
(B) 8
(C) 4
(D) 2

Sol. C

$\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
a mole a mole 2a mole
(i) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
a mole 2a mole
Total mole of NaOH required $=4 \mathrm{a}=16$

$$
a=4
$$

2. Which of the following sets of quantum numbers is not allowed?
(A) $n=3, l=2, m_{1}=0, s+\frac{1}{2}$
(B) $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}_{1}=-2, \mathrm{~s}+\frac{1}{2}$
(C) $\mathrm{n}=3, \mathrm{l}=3, \mathrm{~m}_{1}=-3, \mathrm{~s}-\frac{1}{2}$
(D) $\mathrm{n}=3, \mathrm{l}=0, \mathrm{~m}_{1}=0, \mathrm{~s}-\frac{1}{2}$

Sol. C
For $\mathrm{n}=3 \Rightarrow$ only $3 \mathrm{~s}, 3 \mathrm{p} \& 3 \mathrm{~d}$

$$
\ell=0 \quad \ell=1 \quad \ell=2
$$

$$
\ell=3 \text { not possible }
$$

3. The depression in freezing point observed for a formic acid solution of concentration 0.5 mL L^{-1} is $0.0405^{\circ} \mathrm{C}$. Density of formic acid is $1.05 \mathrm{~g} \mathrm{~mL}^{-1}$. The Van't Hoff factor of the formic acid solution is nearly: (Given for water $\mathrm{kf}_{\mathrm{f}}=1.86 \mathrm{k} \mathrm{kg} \mathrm{mol}^{-1}$)
(A) 0.8
(B) 1.1
(C) 1.9
(D) 2.4

Sol. C
Conc of formic acid $=0.5 \mathrm{ml} / \mathrm{lit}$.

$$
\Delta \mathrm{T}_{\mathrm{f}}=0.0405
$$

Density $=1.05 \mathrm{gm} / \mathrm{ml}$
$\mathrm{D}=\frac{\text { mass }}{v} \Rightarrow 1.05=\frac{\text { mass }}{0.5}$
Mass of $\mathrm{HCOOH}=1.05 \times 0.5=0.525 \mathrm{gm} / \mathrm{lit}$
Molarity $=\frac{0.525}{46}$ moles $/ \mathrm{lit}$.
$\Rightarrow \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times$ molality $=0.0405=\mathrm{i} \times 1.86 \times \frac{0.525}{46}$
$\mathrm{i}=\frac{0.0405 \times 46}{1.86 \times 0.525}=1.9$
4. $\quad 20 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ is mixed with 40 mL of 0.05 M HCl . The pH of the mixture is nearest to: (Given: $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1 \times 10^{-5}, \log 2=0.30, \log 3=0.48, \log 5=0.69, \log 7=0.84, \log 11=1.04$)
(A) 3.2
(B) 4.2
(C) 5.2
(D) 6.2

Sol. C

$\mathrm{NH}_{4} \mathrm{OH}$	+	$\mathrm{HCl} \longrightarrow$	$\mathrm{NH}_{4} \mathrm{Cl}$	+	$\mathrm{H}_{2} \mathrm{O}$
m.moles 20×0.1		40×0.05	\downarrow		
2		2	2 m .moles		
0		0	$\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\frac{2}{60}$		

$$
\begin{aligned}
\mathrm{POH}=\frac{1}{2} & {\left[\mathrm{P}^{\mathrm{kw}}+\mathrm{P}^{\mathrm{kb}}+\log \mathrm{C}\right] } \\
& =\frac{1}{2}\left[14+5+\log \frac{1}{30}\right] \\
& =\frac{1}{2}[19-1-0.4771] \\
& =\frac{1}{2}[18-0.4771] \\
& =9-0.23 \\
& \mathrm{P}^{\mathrm{H}}=5+0.23
\end{aligned}
$$

5. Match List - I with List-II

List - I
List - II
(A) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(I) Cu
(B) $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(II) $\mathrm{Cu} / \mathrm{ZnO}-\mathrm{Cr}_{2} \mathrm{O}_{3}$
(C) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCHO}(\mathrm{g})$
(III) $\mathrm{Fe}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}+\mathrm{K}_{2} \mathrm{O}+\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}(\mathrm{OH})(\mathrm{g})$
(IV) Ni

Choose the correct answer from the options given below:
(A) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
(B) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(C) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(D) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

Sol. C

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow[\mathrm{Ni}]{\mathrm{Fe}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}+\mathrm{K}_{2} \mathrm{O}+\mathrm{Al}_{2} \mathrm{O}_{3}} 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})-^{\mathrm{Ni}} \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})-\mathrm{Cu} \quad \mathrm{HCHO}(\mathrm{g})$
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Cu} / \mathrm{ZnO}-\mathrm{Cr}_{2} \mathrm{O}_{3}} \mathrm{CH}_{3}(\mathrm{OH})(\mathrm{g})$
6. The IUPAC nomenclature of an element with electronic configuration $[R n] 5 f^{14} 6 d^{17} \mathrm{~s}^{2}$ is:
(A) Unnilbium
(B) Unnilunium
(C) Unnilquadium
(D) Unniltrium

Sol. D
Atomic no $=103$ (Unt)
7. The compound(s) that is(are) removed as slag during the extraction of copper is:
(A) CaO
(B) FeO
(C) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) ZnO
(E) NiO

Choose the correct answer from the option given below:
(A) (C), (D) only
(B) (A), (B), (E) only
(B) (A), (B) only
(D) (B) only

Sol. D
Copper pyrite has Impurity of FeO
$\underset{\mathrm{Im} p .}{\mathrm{FeO}}+\underset{\mathrm{Flux}}{\mathrm{SiO}_{2}} \longrightarrow \underset{\mathrm{Sag}}{\mathrm{FeSiO}_{3}}$
8. The reaction of $\mathrm{H}_{2} \mathrm{O}_{2}$ with potassium permanganate in acidic medium leads to the formation of mainly:
(A) Mn^{2+}
(B) Mn^{4+}
(C) Mn^{3+}
(D) Mn^{6+}

Sol. A
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{KMnO}_{4}+\mathrm{O}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{H}_{2} \mathrm{O}$
9. Choose the correct order of density of the alkali metals:
(A) $\mathrm{Li}<\mathrm{K}<\mathrm{Na}<\mathrm{Rb}<\mathrm{Cs}$
(B) $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}<\mathrm{Cs}$
(C) $\mathrm{Cs}<\mathrm{Rb}<\mathrm{K}<\mathrm{Na}<\mathrm{Li}$
(D) $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Cs}<\mathrm{Rb}$

Sol. A
K has lower density than Na - due to large size
10. The geometry around boron in the product ' B ' formed from the following reaction is

$$
\begin{gathered}
\mathrm{BF}_{3}+\mathrm{NaH} \xrightarrow{450 \mathrm{~K}} \mathrm{~A}+\mathrm{NaF} \\
\mathrm{~A}+\mathrm{NMe}_{3} \rightarrow \mathrm{~B}
\end{gathered}
$$

(A) trigonal planar
(B) tetrahedral
(C) pyramidal
(D) square planar

Sol. B

11. The interhalogen compound formed from the reaction of bromine with excess of fluorine is a:
(A) hypohalite
(B) halate
(C) perhalate
(D) halite

Sol. B

$$
\begin{aligned}
& \mathrm{Br}_{2}+\underset{\text { excess }}{5 \mathrm{~F}_{2} \longrightarrow 2 \mathrm{BrF}_{5}} \\
& \mathrm{BrF}_{5}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HBrO}_{3}+5 \mathrm{HF}
\end{aligned}
$$

12. The photochemical smog does not generally contain:
(A) NO
(B) NO_{2}
(C) SO_{2}
(D) HCHO

Sol. C

The common components of photochemical smog are ozone, nitric oxide, acrolein, formeldehyde and PAN
13. A compound ' A ' on reaction with ' X ' and ' Y ' produces the same major product but different by product ' a ' and ' b '. Oxidation of ' a ' gives a substance produce by ants.

' X ' and ' Y ' respectively are
(A) $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$and dil. $\mathrm{KMnO}_{4}, 273 \mathrm{~K}$
(B) KMnO_{4} (dilute), 273 K and $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
(C) $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$and $\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Zn}$
(D) $\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{Zn}$ and $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$

Sol. D

14. Most stable product of the following reaction is:

(i) $\mathrm{NaCN}, \mathrm{DMF}$
(A)

(B)

(C)

CN
(D)

Sol. B

15. Which one of the following reactions does not represent correct combination of substrate and product under the given conditions?

(B)

(C)

(D)

Sol. D

16. An organic compound ' A ' on reaction with NH_{3} followed by heating gives compound B . Which one further strong heating gives compound $\mathrm{C}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{2}\right)$. Compound C on sequential reaction with ethanolic KOH , alkyl chloride and hydrolysis with alkali gives a primary amine. The compound A is:
(A)

(B)

(C)

(D)

Sol. C

Gabrial pthalimide reaction
17. Melamine polymer is formed by the condensation of:
(A)

(B)

(C)

(D)

Sol. A

18. During the denaturation of proteins, which of these structures will remain intact?
(A) Primary
(B) Secondary
(C) Tertiary
(D) Quaternary

Sol. A
19. During used to bind to receptors, inhibiting its natural function and blocking a message are called:
(A) Agonists
(B) Antagonists
(C) Allosterists
(D) Anti histaminists

Sol. B

20. Given below are two statements:

Statement I: On heating with KHSO_{4}, glycerol is dehydrated and acrolein is formed.
Statement II: Acrolein has fruity odour and can be used to test glycerol's presence.
Choose the correct option.
(A) Both Statement I and Statement II are correct
(B) Both Statement I and Statement II are incorrect
(C) Statement I is correct but Statement II is incorrect
(D) Statement I incorrect but Statement II is correct

Sol. C

Acrolein
Acrolein does not have fruity oclour.

SECTION - B

21. Among the following species
$\mathrm{N}_{2}, \mathrm{~N}_{2}{ }^{+}, \mathrm{N}_{2}{ }^{-}, \mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{-}, \mathrm{O}_{2}{ }^{2-}$
The number of species showing diamagnesim is \qquad .

Sol. 2

Diagmagnetic species are $\mathrm{N}_{2}, \mathrm{O}_{2}{ }^{2-}$.
22. The enthalpy of combustion of propane, graphite and dihydrogen at 298 K are -2220.0 kJ $\mathrm{mol}^{-1},-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The magnitude of enthalpy of formation of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$. (Nearest integer)
Sol. 104
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{c}}=3 \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \mathrm{CO}_{2}+4 \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \mathrm{H}_{2} \mathrm{O}-\Delta \mathrm{H}_{\mathrm{f}} \mathrm{C}_{3} \mathrm{H}_{8}$
$-2220=3(-393.5)+4(-285.8)-x$
$-2220=-1180.5-1143.2-\mathrm{x}$
$x=-2323.7+2220$
$=103.7$
$=104 \mathrm{~kJ}$
23. The pressure of a moist gas at $27^{\circ} \mathrm{C}$ is 4 atm . The volume of the container is doubled at the same temperature. The new pressure of the moist gas is \qquad $\times 10^{-1} \mathrm{~atm}$. (Nearest integer)
(Given: The vapour pressure of water at $27^{\circ} \mathrm{C}$ is 0.4 atm)

Sol. 2.2

Press. of moist $=4 \mathrm{~atm}$
Press .of gas $=4-\mathrm{v} . \mathrm{p}$ of $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& =4-0.4 \\
& =3.6
\end{aligned}
$$

When volume is doubled $\Rightarrow P=P / 2$

$$
=\frac{3.6}{2}=1.8
$$

Total Press. $=1.8+$ v.p of $\mathrm{H}_{2} \mathrm{O}$

$$
=1.8+0.4=2.2 \mathrm{~atm}
$$

24. The cell potential for $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(\mathrm{aq})\right|\left|\mathrm{Sn}^{\mathrm{x}+}\right| \mathrm{Sn}$ is 0.801 V at 298 K . The reaction quotient for the above reaction is 10^{-2}. The number of electrons involved in the given electrochemical cell reaction is \qquad .
(Given: $\mathrm{E}_{\mathrm{Zn}^{2+} \mid \mathrm{Zn}}^{0}=0.763 \mathrm{~V}, \mathrm{E}_{\mathrm{Sn}^{\mathrm{x}+} \mid \mathrm{Sn}}^{0}=+0.008 \mathrm{~V}$ and $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}$)

Sol. 4

$\mathrm{Zn}\left|\mathrm{Zn}^{+2}\right|\left|\mathrm{Sn}^{+\mathrm{x}}\right| \mathrm{Sn}$
$\mathrm{E}=0.081 \mathrm{~V}, \mathrm{q}=10^{-2}$
$0.081=\mathrm{E}^{\circ}-\frac{0.0591}{n} \log \mathrm{Q}$
$0.801=0.771-\frac{0.66}{n} \log 10^{-2}$
$0.03=\frac{-0.06 \times-2}{n}=\frac{0.12}{n}$
$\mathrm{N}=0.12 / 0.03=4$
Total e^{-}trensfer $=4$
25. The half life for the decomposition of gaseous compound A is 240 s when the gaseous pressure was 500 Torr initially. When the pressure was 250 Torr, the half life was found to be 4.0 min . The order of the reaction is \qquad . (Nearest integer)
Sol. 1
$\mathrm{t} \frac{1}{2}=240 \mathrm{sec}, \quad \mathrm{p}^{\circ}=500$ torr
$\mathrm{t} \frac{1}{2}=4 \mathrm{~min} \quad \mathrm{p}^{\circ}=250$ torr
$=4 \times 60=240 \mathrm{sec}$
Order $=1, t_{\frac{1}{2}}$ is independent of initial press.
26. Consider the following metal complexes:
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
$\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$
The spin-only magnetic moment value of the complex that absorbes light with shortest wavelength is \qquad B.M. (Nearest integer)

Sol. 0
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ absorbes light with shortest wave length because CN^{-}is SFL so more spliting takes place and $\mathrm{t}_{2} \mathrm{~g}$ and eg orbital have more energy diffence.
27. Among $\mathrm{Co}^{3+}, \mathrm{Ti}^{2+}, \mathrm{V}^{2+}$ and Cr^{2+} ions, one if used as a reagent cannot liberate H_{2} from dilute mineral acid solution, its spin-only magnetic moment in gaseous state is \qquad B.M. (Nearest integer)
Sol. 5
Co^{+3} has more value of SRP so it cannot liberate H_{2} from dilute acid solution.
28. While estimating the nitrogen present in an organic compound by Kjeldahl's method, the ammonia evolved from 0.25 g of the compound neutralized 2.5 mL of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The percentage of nitrogen present in organic compound is \qquad .

Sol. 56

$\mathrm{M}_{\text {eq }}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}=2.5 \times 2 \times 2$

$$
=10=m_{\text {eq }} \text { of } \mathrm{NH}_{3}
$$

m. moles of $\mathrm{NH}_{3}=\mathrm{m}_{\text {eq }}$ of $\mathrm{NH}_{3}[\mathrm{nf}=1]$

$$
=10
$$

m. moles of $\mathrm{N}=10$, moles of $\mathrm{N}=10 \times 10^{-3}$
$w t$. of $\mathrm{N}=10^{-2} \times 14=0.14 \mathrm{gm}$
$\%$ of $\mathrm{N}=\frac{0.14}{0.25} \times 100=56 \%$
29. The number of sp^{3} hybridised carbons in an acyclic neutral compound with molecular formula $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}$ is \qquad ..

Sol. 1
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}$
DOU $=3$
30. In the given reaction

(Where Et is $-\mathrm{C}_{2} \mathrm{H}_{5}$)
The number of chiral carbon/s in product A is \qquad .

Sol. 2

(A)

