CHEMISTRY JEE-MAIN (MARCH-Attempt) 16 MARCH (Shift-2) Paper

Section-A

Cl 1.

Identify the reagent(s) 'A' and condition(s) for the reaction

(1) A = HCI; Anhydrous $AICI_3$

(2) $A = HCI, ZnCI_2$

(3) $A = Cl_2$, dark, Anhydrous $AlCl_3$

(4) $A = Cl_2$; UV light

Ans. (4)

Sol.

- 2. The INCORRECT statement regarding the structure of C₆₀ is:
 - (1) It contains 12 six-membered rings and 24 five-membered rings.
 - (2) Each carbon atom forms three sigma bonds.
 - (3) The five-membered rings are fused only to six-membered rings.
 - (4) The six-membered rings are fused to both six and five-membered rings.

Ans. **(1)**

Sol. it contain 12 five membered ring & 20 six membered ring

3. Match List-I with List-II:

LIST-I		
Test/Reagents/Observation(S)

- Lassaigne's Test
- (a) Cu(II) oxide (b)
- Silver nitrate (c)
- The sodium fusion extract gives black (d) precipitate with acetic acid & lead acetate
- The correct match is:
- (1)(a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii) (2)
- (3) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- (4) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)

Ans. **(1)**

Sol. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

List-II Species detected

Carbon (i)

(iv)

- Sulphur (ii)
- N, S, P and halogen (iii)
 - Halogen Specifically

4.
$$(i)C_6H_5MgBr Ether (1.0equivalent), dry X Major Product$$

$$OCH_3$$

The structure of X is:

(1)
$$C_6H_5$$
 (2) NH_2 (3) C_6H_5 (4) NH_2 C_6H_5

Ans. (1) Sol.

$$C \equiv N$$

$$C_{6}H_{5}$$

$$C = NMgBr$$

$$CH-CH_{3}$$

$$OCH_{3}$$

$$C-C_{6}H_{5}$$

$$CH-CH_{3}$$

$$OCH_{3}$$

$$CH-CH_{3}$$

$$OCH_{3}$$

- (1) to remove basic impurities
- (2) to activate NH₃used in the reaction
- (3) to increase the reactivity of alkyl halide
- (4) to remove acidic impurities

(4) Ans.

Sol.

$$R-X \xrightarrow{NH_3} R-NH_2 \xrightarrow{R-X} R_2NH$$

$$-HX \qquad -HX \qquad R-X$$

$$R-X \xrightarrow{R-X} R_2NH$$

$$R-X \xrightarrow{R-X} R_3N$$

During the reaction HX (acid) is form

Hence, we use NaOH to remove this acidic impurities

6. Arrange the following metal complex/compounds in the increasing order of spin only magnetic moment. Presume all the three, high spin system.

(Atomic numbers Ce = 58, Gd = 64 and Eu = 63)

(a)
$$(NH_4)_2[Ce(NO_3)_6]$$
 (b) $Gd(NO_3)_3$ and

(b)Gd(
$$NO_3$$
)₃ and

Answer is:

Ans. (1)

Sol.
$$(NH_4)_2 [Ce(NO_3)_6]$$
 $(n = 0) \Rightarrow \mu = 0 B.M$

Eu
$$(NO_3)_3$$
 $(n = 6) \Rightarrow \mu = 6.93 \text{ B.M}$

$$Gd(NO_3)_3$$
 $(n = 7) \Rightarrow \mu = 7.94 \text{ B.M}$

7.	Identify the elements X and Y using the ionisation energy values given below:
	Ionization energy (kJ/mol)

$$(1) X = F; Y = Mg$$

(3)
$$X = Na; Y = Mg$$

(2)
$$X = Mg; Y = F$$

$$(4) X = Mg; Y = Na$$

Ans. (3)

2nd I. E of Alkali metals is higher than their respective period. Sol.

- 8. The INCORRECT statements below regarding colloidal solutions is:
 - (1) A colloidal solution shows colligative properties.
 - (2) An ordinary filter paper can stop the flow of colloidal particles.
 - (3) A colloidal solution shows Brownian motion of colloidal particles.
 - (4) The flocculating power of Al³⁺ is more than that of Na⁺.

Ans. (2)

- Colloidal solutions can pass through ordinary filter paper but cannot pass through special filter Sol. collodial solution coated paper.
- 9. The characteristics of elements X, Y and Z with atomic numbers, respectively, 33, 53 and 83 are:
 - (1) X and Z are non-metals and Y is a metalloid.
 - (2) X and Y are metalloids and Z is a metal
 - (3) X, Y and Z are metals.
 - (4) X is a metalloid, Y is a non-metal and Z is a metal.

(4) Ans.

Sol. **Atomic No.** Element

- As (Metalloid) (1) 33 -
- I (Non metal) (2)53
- (3)83Bi (Metal)
- The exact volumes of 1 M NaOH solution required to neutralise 50 mL of 1 M H₃PO₃ solution and 10. 100 mL of 2 M H₃PO₂ solution, respectively, are:
 - (1) 100 mL and 50 mL

(2) 50 mL and 50 mL

(3) 100 mL and 100 mL

(4) 100 mL and 200 mL

Ans. **(4)**

Sol. (1)
$$2NaOH + H_3PO_3 \longrightarrow Na_2HPO_3 + 2H_2O$$

 $100m \text{ mole}$ $50m \text{ mole}$

100m mole =
$$M \times V_{ml}$$

100m mole = $1 \times V_{ml}$

$$V_{ml} = 100 \text{ ml}$$

200m mole =
$$M \times V_{ml}$$

$$V_{ml} = 200 \text{ ml}$$

- 11. Which of the following reduction reaction CANNOT be carried out with coke?
 - (1) $Fe_2O_3 \rightarrow Fe$

 $(2)ZnO \rightarrow Zn$

(3) $Al_2O_3 \rightarrow Al$

(4) $Cu_2O \rightarrow Cu$

Ans. (3)

Sol. All is extracted by electrolytic reduction of Al₂O₃

- **12.** An unsaturated hydrocarbon X on ozonolysis gives A. Compound A when warmed with ammonical silver nitrate forms a bright silver mirror along the sides of the test tube. The unsaturated hydrocarbon X is:
 - (1) CH₃−C≡C−CH₃

(3) HC≡C−CH₂−CH₃

CH₃ | 4) CH₃—C=

Ans. (3) Sol.

> CH₃CH₂ \equiv CH $\xrightarrow{\text{(i) O}_3}$ CH₃CH₂COOH + H-C-OH HCOOH $\xrightarrow{\text{[Ag(NH_3)_2]}^+}$ CO₂ \uparrow + H₂O+2Ag \downarrow reagent

13. Statement-I: Sodium hydride can be used as an oxidising agent.

Statement-II: The lone pair of electrons on nitrogen in pyridine makes it basic:

Choose the CORRECT answer from the options given below:

- (1) Statement I is true but statement II is false
- (2) Both statement I and statement II are false
- (3) Both statement I and statement II are true
- (4) Statement I is false but statement II is true

Ans. (4)

- **Sol.** \Rightarrow NaH is used as reducing agent.
 - \Rightarrow The ℓp on nitrogen in pyridine makes it basic

- 14. Which of the following polymer is used in the manufacture of wood laminates?
 - (1) Melamine formaldehyde resin
- (2)cis-poly isoprene
- (3) Phenol and formaldehyde resin
- (4) Urea formaldehyde resin

Ans. (1)

Sol. Melamine formaldehyde resin is used in the manufacture of wood laminates.

15. The correct statements about H_2O_2 are:

- (A) used in the treatment of effluents.
- (B) used as both oxidising and reducing agents.
- (C) the two hydroxyl groups lie in the same plane.
- (D) miscible with water.

Choose the correct answer from the options given below:

(1) (A), (C) and (D) only

(2) (A), (B) and (D) only

(3) (A), (B), (C) and (D)

(4) (B), (C) and (D) only

Ans. (2)

Sol. (1) In H_2O_2 oxidation of oxygen is-1 Therefore acts both as O.A and R.A.

- (2) H_2O_2 is miscible in water due to inter molecular H-Bonding.
- (3) H_2O_2 has open book structure in which both -OH group are not in same plane.

16. The green house gas/es is (are):

(A) Carbon dioxide

(B) Oxygen

(C) Water vapour

(D) Methane

Choose the most appropriate answer from the options given below:

(1) (A) and (B) only

(2) (A), (C) and (D) only

(3) (A) and (C) only

(4) (A) only

Ans. (2)

Sol. The green house gases are CO₂, CH₄ & H₂O vapour.

In the above reaction, the reagent "A" is:

(1) NaBH₄, H_3O^+

(2)HCl, Zn-Hg

(3) Alkaline KMnO₄, H⁺

(4) LiAlH₄

Ans. (3)

Sol.

$$CH_3$$
Alkaline $KMnO_4$, H^+
 OCH_3
 OCH_3

18. Which of the following is least basic?

(1) (CH₃CO)₂NH

(2) (CH₃CO)NHC₂H₅

(3) $(C_2H_5)_3N$

(4) $(C_2H_5)_2NH$

Due to higher resonance, ℓp of N is not available for accept H⁺ So it is least basic.

19. Fex_2 and Fey_3 are known when x and y are:

Ans.

FeI₃, does not react because of I⁻ being very good reducing agent. Sol.

20. The secondary structure of protein is stabilised by:

(1)van der Waals forces

(2) Peptide bond

(3) Hydrogen bonding

(4)glycosidic bond

Ans. (3)

The secondary structure of protein stablised by H-bonding. Sol.

Section-B

At 25°C, 50 g of iron reacts with HCl to form FeCl₂. The evolved hydrogen gas expands against 1. a constant pressure of 1 bar. The work done by the gas during this expansion is ____ (Round off to the Nearest Integer).

[Given: $R = 8.14 \text{ J mol}^{-1} \text{ K}^{-1}$. Assume, hydrogen is an ideal gas]

[Atomic mass of Fe is 55.85 u]

Ans. 2218

Fe + 2HCl \longrightarrow FeCl₂ + H₂(g) Sol.

Moles of Fe = $\frac{50}{55.85}$ mol = moles of H₂

 $W_{irrev} = -P_{ext} \cdot \Delta V$

= -moles of $H_2 \times RT$

$$= -\frac{50}{55.85} \times 8.314 \times 298$$

= -2218.05 J

Nearest integer = 2218

A 5.0 m moldm⁻³ aqueous solution of KCl has a conductance of 0.55 mS when measured in a 2. cell of cell constant 1.3 cm⁻¹. The molar conductivity of this solution is mSm²mol¹.

(Round off to the Nearest Integer).

Ans.

 $G_{KCI} = 0.55 \text{ mS} = 55 \times 10^{-5} \text{s}$ Sol. Cell constant = $\ell/A = 1.3 \text{ cm}^{-1}$

$$\begin{split} &\lambda_{\text{M}} = ?? \\ &R = G(\ell/A) = 55 \times 10^{-5} \times 1.3 \text{ Scm}^{-1} \\ &\lambda_{\text{M}} = \frac{K \times 1000}{\text{Molarity}} = \frac{55 \times 1.3 \times 10^{-5} \times 1000}{5 \times 10^{-3}} \\ &\lambda_{\text{M}} = 11 \times 1.3 \times 10 = 11 \times 13 = 143 \text{ S cm}^{+2} \text{mol}^{-1} \\ &\lambda_{\text{M}} = \frac{143 \times 1000 \times 10^{-3} \text{ S}}{(10^{-2} \, \text{M})^{-2}} \, \text{mol}^{-1} \\ &\lambda_{\text{M}} = 143 \times 1000 \times 10^{-4} (\text{m.S}) \text{m}^2. \text{mol}^{-1} \\ &= 14.3 \end{split}$$

The number of orbitals with n = 5, $m_1 = +2$ is ______. (Round off to the Nearest Integer). 3.

Ans.

Ans. 3
Sol. For n = 5
$$\ell = 0, 1, 2, 3, 4$$
 $\ell = 2 \rightarrow m = -2, -1, 0, +1, +2$
 $\ell = 3 \rightarrow m = -3, -2, -1, 0, +1, +2, +3$
 $\ell = 4 \rightarrow m = -4, -3, -2, -1, 0, +1, +2, +3, +4$
Total no. of orbitals = 3

Ans. $\lambda_M = 14$ Nearest integer

4. A and B decompose via first order kinetics with half-lives 54.0 min and 18.0 min respectively. Starting from an equimolarnon reactive mixture of A and B, the time taken for the concentration of A to become 16 times that of B is __ min. (Round off to the Nearest Integer).

Sol. A
$$\xrightarrow{1^{st} \text{ order}}$$
 $t_{1/2}(A) = 54$ B $\xrightarrow{1^{st} \text{ order}}$ $t_{1/2}(B) = 18$

$$A_0 = B_0 = N_0$$
 $A_t = \frac{A_0}{2^t / 54}$
 $B_t = \frac{B_0}{2^t / 18}$

$$A_{t} = 16.B_{t}$$

$$\frac{A_{0}}{2^{t}/54} = 16 \times \frac{B_{0}}{2^{t}/18}$$

$$2^{t/18-t/54} = 16$$

$$2^{2t/54} = 16 = 2^4$$
 $2^{2t/54} = 4$

t = 108 min

[Ti(H₂O)₆]³⁺ absorbs light of wavelength 498 nm during a d-d transition. The octahedral 5. splitting energy for the above complex is $____$ × 10^{-19} J. (Round off to the Nearest Integer).

$$h = 6.626 \times 10^{-34} Js; c = 3 \times 10^8 ms^{-1}.$$

Ans. (4)

Sol.
$$\Delta_0 = \frac{hc}{\lambda_{abs}} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{498 \times 10^{-9}}$$

$$= \frac{6.626 \times 3}{498} \times 10^{-17} = 0.0399 \times 10^{-17} = 3.99 \times 10^{-19} \simeq 4 \times 10^{-19} \text{ J}$$

Sulphurous acid (H_2SO_3) has $Ka_1 = 1.7 \times 10^{-2}$ and $Ka_2 = 6.4 \times 10^{-8}$. The pH of 0.588 M H_2SO_3 is ______. (Round off to the Nearest Integer).

Ans. 5

Sol.
$$H_2SO_3$$
 (aq) $\rightleftharpoons HSO_3^-$ (aq) + H^+ (aq)
 $0.588M = C$ $C\alpha_1$ $C\alpha_1 + C\alpha_1 \alpha_2$
 HSO_3^- (aq) $\rightleftharpoons H^+$ (aq) + $SO_3^{2^-}$ (aq)
 $C\alpha_1$ (1 - α_2) $C\alpha_1\alpha_2$ $C\alpha_1\alpha_2$
+
 $C\alpha_1$
 $\alpha_1 = \sqrt{\frac{1.7 \times 10^{-2}}{0.588}} = \sqrt{\frac{17}{289 \times 2}}$

Therefore
$$\frac{\alpha_1 << 1}{(1 - \alpha_1) \approx 1}$$

 $= 4.99 \approx 5$

Hence
$$\alpha_2 << 1 \& (1 - \alpha_2) \approx 1$$

 $\therefore [H^+] = C \alpha_1$
 $= \sqrt{Ka_1 \times C} = \sqrt{17 \times 10^{-3} \times 0.588}$
 $= 99.98 \times 10^{-3}$
pH = 1.99 + 3

7. In Duma's method of estimation of nitrogen, 0.1840 g of an organic compound gave 30 mL of nitrogen collected at 287 K and 758 mm of Hg pressure. The percentage composition of nitrogen in the compound is _______. (Round off to the Nearest Integer).

[Given: Aqueous tension at 287 K = 14 mm of Hg]

Ans. 19

Sol. Moles of
$$N_2 = \frac{(758-14)}{760} \times \frac{30 \times 10^{-3}}{0.0821 \times 287}$$

= 1.246 × 10⁻³ mol
mass of N = 1.246 × 10⁻³ × 28
mass % of 'N' = $\frac{\text{mass of 'N'}}{\text{total mass}} \times 100$
= $\frac{1.246 \times 28 \times 10^{-3}}{0.184} \times 100$
= $\frac{124.6 \times 28}{0.184} \% = 18.96\%$
 $\approx 19\%$

8. Ga (atomic mass 70 u) crystallizes in a hexagonal close packed structure. The total number of voids in 0.581 g of Ga is _____ \times 10²¹. (Round off to the Nearest Integer). [Given: $N_A = 6.023 \times 10^{23}$]

Ans. 15

Sol. No. of moles of Ga =
$$\frac{0.581}{70}$$

No. of atoms of Ga =
$$\frac{0.581}{70} \times N_A$$

∴ Total number of voids =
$$\frac{0.581}{70} \times N_A \times 3$$

= $0.0249 \times 6 \times 10^{23}$
= 15×10^{21}

(As there are one octahedral void and two tetrahedral voids per atom)

9. When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solution, $\underline{}$ × 10⁻⁵ moles of lead sulphate precipitate out. (Round off to the Nearest Integer).

525 Ans.

Sol.
$$3Pb(NO_3)_2 + Cr_2(SO_4)_3$$

 $35ml$ 20 ml
 $0.15M$ 0.12M
= 5.25 m mol = 2.4 m mol

$$3 \text{ PbSO}_4 \downarrow + 2 \text{Cr(NO}_3)_3$$

$$= 525 \times 10^{-5} \text{ mol}$$

At 363 K, the vapour pressure of A is 21 kPa and that of B is 18 kPa. One mole of A and 2 10. moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is kPa. (Round off to the Nearest Integer).

Ans.

Sol.
$$X_A = \frac{1}{1+2} = \frac{1}{3}$$
 $X_B = \frac{2}{3}$

$$X_B = \frac{2}{3}$$

$$P_A^{\circ} = 21 \text{ kPa}$$

$$P_A^o = 21 \text{ kPa}$$
 $P_B^o = 18 \text{ kPa}$

$$P_{total} \; = \; P_{A}^{o} X_{A}^{} \; + P_{B}^{o} X_{B}^{}$$

$$= 21 \times \frac{1}{3} + 18 \times \frac{2}{3}$$

$$= 7 + 12$$