CHEMISTRY
 JEE-MAIN (MARCH-Attempt) 16 MARCH (Shift-2) Paper

Section-A

1.

Identify the reagent(s) ' A ' and condition(s) for the reaction
(1) $\mathrm{A}=\mathrm{HCl}$; Anhydrous AlCl_{3}
(2) $A=\mathrm{HCl}, \mathrm{ZnCl}_{2}$
(3) $\mathrm{A}=\mathrm{Cl}_{2}$, dark, Anhydrous AlCl_{3}
(4) $A=C_{2}$; UV light

Ans. (4)
Sol.

2. The INCORRECT statement regarding the structure of C_{60} is:
(1) It contains 12 six-membered rings and 24 five-membered rings.
(2) Each carbon atom forms three sigma bonds.
(3) The five-membered rings are fused only to six-membered rings.
(4) The six-membered rings are fused to both six and five-membered rings.

Ans. (1)
Sol. it contain 12 five membered ring \& 20 six membered ring
3. Match List-I with List-II:

List-I
 Test/Reagents/Observation(s)

(a) Lassaigne's Test
(b) $\mathrm{Cu}(\mathrm{II})$ oxide
(c) Silver nitrate
(d) The sodium fusion extract gives black precipitate with acetic acid \& lead acetate

List-II

Species detected

(i) Carbon
(ii) Sulphur
(iii) $\mathrm{N}, \mathrm{S}, \mathrm{P}$ and halogen
(iv) Halogen Specifically

The correct match is:
(1) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(2) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
(3) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
(4) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)

Ans. (1)
Sol. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
4.

The structure of X is:
(1)

(2)

(3)

(4)

Ans. (1)

Sol.

5. Ammonolysis of Alkylhalides followed by the treatment with NaOH solution can be used to prepare primary, secondary and tertiary amines. The purpose of NaOH in the reaction is:
(1) to remove basic impurities
(2) to activate NH_{3} used in the reaction
(3) to increase the reactivity of alkyl halide
(4) to remove acidic impurities

Ans. (4)

Sol.

During the reaction HX (acid) is form
Hence, we use NaOH to remove this acidic impurities
6. Arrange the following metal complex/compounds in the increasing order of spin only magnetic moment. Presume all the three, high spin system.
(Atomic numbers $\mathrm{Ce}=58, \mathrm{Gd}=64$ and $\mathrm{Eu}=63$)
(a) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$
(b) $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}$ and
(c) $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}$

Answer is:
(1) (a) $<$ (c) $<$ (b)
(2) (a) $<$ (b) $<$ (c)
(3) (c) $<$ (a) $<$ (b)
(4) (b) $<$ (a) $<$ (c)

Ans. (1)
Sol. $\quad\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right] \quad(\mathrm{n}=0) \quad \Rightarrow \mu=0 \mathrm{~B} . \mathrm{M}$
$\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \quad(\mathrm{n}=6) \Rightarrow \mu=6.93 \mathrm{~B} . \mathrm{M}$
$\operatorname{Gd}\left(\mathrm{NO}_{3}\right)_{3} \quad(\mathrm{n}=7) \quad \Rightarrow \mu=7.94 \mathrm{~B} \cdot \mathrm{M}$
7. Identify the elements X and Y using the ionisation energy values given below:

Ans. (3)
Sol. $\quad 2^{\text {nd }}$ I. E of Alkali metals is higher than their respective period.
8. The INCORRECT statements below regarding colloidal solutions is:
(1) A colloidal solution shows colligative properties.
(2) An ordinary filter paper can stop the flow of colloidal particles.
(3) A colloidal solution shows Brownian motion of colloidal particles.
(4) The flocculating power of Al^{3+} is more than that of Na^{+}.

Ans. (2)
Sol. Colloidal solutions can pass through ordinary filter paper but cannot pass through special filter collodial solution coated paper.
9. The characteristics of elements X, Y and Z with atomic numbers, respectively, 33, 53 and 83 are:
(1) X and Z are non-metals and Y is a metalloid.
(2) X and Y are metalloids and Z is a metal
(3) X, Y and Z are metals.
(4) X is a metalloid, Y is a non-metal and Z is a metal.

Ans. (4)

Sol. Atomic No.

(1) 33
(2) 53 \qquad
\qquad

Element
As (Metalloid)
I (Non metal)
Bi (Metal)
10. The exact volumes of 1 M NaOH solution required to neutralise 50 mL of $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{3}$ solution and 100 mL of $2 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{2}$ solution, respectively, are:
(1) 100 mL and 50 mL
(2) 50 mL and 50 mL
(3) 100 mL and 100 mL
(4) 100 mL and 200 mL

Ans. (4)
Sol. (1) $2 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{HPO}_{3}+\quad 2 \mathrm{H}_{2} \mathrm{O}$ 100 m mole $\quad 50 \mathrm{~m}$ mole
100 m mole $=\mathrm{M} \times \mathrm{V}_{\mathrm{ml}}$
100 m mole $=1 \times \mathrm{V}_{\mathrm{ml}}$
$V_{\mathrm{ml}}=100 \mathrm{ml}$
(2) $\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{2} \longrightarrow \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}$

200 m mole $\quad 200 \mathrm{~m}$ mole
200 m mole $=\mathrm{M} \times \mathrm{V}_{\mathrm{ml}}$
$\mathrm{V}_{\mathrm{ml}}=200 \mathrm{ml}$
11. Which of the following reduction reaction CANNOT be carried out with coke?
(1) $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}$
(2) $\mathrm{ZnO} \rightarrow \mathrm{Zn}$
(3) $\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}$
(4) $\mathrm{Cu}_{2} \mathrm{O} \rightarrow \mathrm{Cu}$

Ans. (3)
Sol. Al is extracted by electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$
12. An unsaturated hydrocarbon X on ozonolysis gives A. Compound A when warmed with ammonical silver nitrate forms a bright silver mirror along the sides of the test tube. The unsaturated hydrocarbon X is:
(1)

(2)

(3) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(4)

Ans. (3)

Sol.

13. Statement-I: Sodium hydride can be used as an oxidising agent.

Statement-II: The lone pair of electrons on nitrogen in pyridine makes it basic:
Choose the CORRECT answer from the options given below:
(1) Statement I is true but statement II is false
(2) Both statement I and statement II are false
(3) Both statement I and statement II are true
(4) Statement I is false but statement II is true

Ans. (4)
Sol. $\Rightarrow \mathrm{NaH}$ is used as reducing agent.
\Rightarrow The ℓ p on nitrogen in pyridine makes it basic

14. Which of the following polymer is used in the manufacture of wood laminates?
(1) Melamine formaldehyde resin
(2)cis-poly isoprene
(3) Phenol and formaldehyde resin
(4) Urea formaldehyde resin

Ans. (1)
Sol. Melamine formaldehyde resin is used in the manufacture of wood laminates.
15. The correct statements about $\mathrm{H}_{2} \mathrm{O}_{2}$ are:
(A) used in the treatment of effluents.
(B) used as both oxidising and reducing agents.
(C) the two hydroxyl groups lie in the same plane.
(D) miscible with water.

Choose the correct answer from the options given below:
(1) (A), (C) and (D) only
(2) (A), (B) and (D) only
(3) (A), (B), (C) and (D)
(4) (B), (C) and (D) only

Ans. (2)
Sol. (1) In $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidation of oxygen is-1 Therefore acts both as O.A and R.A.
(2) $\mathrm{H}_{2} \mathrm{O}_{2}$ is miscible in water due to inter molecular H -Bonding.
(3) $\mathrm{H}_{2} \mathrm{O}_{2}$ has open book structure in which both -OH group are not in same plane.
16. The green house gas/es is (are):
(A) Carbon dioxide
(B) Oxygen
(C) Water vapour
(D) Methane

Choose the most appropriate answer from the options given below:
(1) (A) and (B) only
(2) (A), (C) and (D) only
(3) (A) and (C) only
(4) (A) only

Ans. (2)
Sol. The green house gases are $\mathrm{CO}_{2}, \mathrm{CH}_{4} \& \mathrm{H}_{2} \mathrm{O}$ vapour.
17.

In the above reaction, the reagent " A " is:
(1) $\mathrm{NaBH}_{4}, \mathrm{H}_{3} \mathrm{O}^{+}$
(2) $\mathrm{HCl}, \mathrm{Zn}-\mathrm{Hg}$
(3) Alkaline $\mathrm{KMnO}_{4}, \mathrm{H}^{+}$
(4) LiAlH_{4}

Ans. (3)
Sol.

18. Which of the following is least basic?
(1) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \ddot{\mathrm{~N}} \mathrm{H}$
(2) $\left(\mathrm{CH}_{3} \mathrm{CO}\right) \ddot{\mathrm{N}} \mathrm{HC}_{2} \mathrm{H}_{5}$
(3) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \ddot{\mathrm{~N}}$
(4) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \ddot{\mathrm{~N}} \mathrm{H}$

Ans. (1)

Sol.

Due to higher resonance, ℓp of N is not available for accept H^{+}
So it is least basic.
19. Fex_{2} and Fey_{3} are known when x and y are:
(1) $x=C l, B r, I$ and $y=F, C l, B r, I$
(2) $x=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ and $\mathrm{y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$
(3) $x=F, C l, B r$, I and $y=F, C l, B r, I$
(4) $x=F, C l, B r$ and $y=F, C l, B r, I$

Ans. (2)

Sol. FeI_{3}, does not react because of I^{-}being very good reducing agent.
20. The secondary structure of protein is stabilised by:
(1)van der Waals forces
(2) Peptide bond
(3) Hydrogen bonding
(4)glycosidic bond

Ans. (3)

Sol. The secondary structure of protein stablised by H -bonding.

Section-B

1. At $25^{\circ} \mathrm{C}, 50 \mathrm{~g}$ of iron reacts with HCl to form FeCl_{2}. The evolved hydrogen gas expands against a constant pressure of 1 bar. The work done by the gas during this expansion is \qquad J. (Round off to the Nearest Integer).
[Given: $\mathrm{R}=8.14 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Assume, hydrogen is an ideal gas]
[Atomic mass of Fe is 55.85 u]
Ans. 2218
Sol. $\mathrm{Fe}+2 \mathrm{HCl} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}(\mathrm{~g})$
50g
Moles of $\mathrm{Fe}=\frac{50}{55.85} \mathrm{~mol}=$ moles of H_{2}
$\mathrm{W}_{\text {irrev }}=-\mathrm{P}_{\text {ext }} . \Delta \mathrm{V}$
$=-$ moles of $\mathrm{H}_{2} \times \mathrm{RT}$
$=-\frac{50}{55.85} \times 8.314 \times 298$
$=-2218.05 \mathrm{~J}$
Nearest integer $=2218$
2. A 5.0 m moldm ${ }^{-3}$ aqueous solution of KCl has a conductance of 0.55 mS when measured in a cell of cell constant $1.3 \mathrm{~cm}^{-1}$. The molar conductivity of this solution is \qquad $\mathrm{mSm}^{2} \mathrm{~mol}^{1}$.
(Round off to the Nearest Integer).
Ans. 14
Sol. $\quad \mathrm{G}_{\mathrm{KCl}}=0.55 \mathrm{mS}=55 \times 10^{-5} \mathrm{~s}$
Cell constant $=\ell / \mathrm{A}=1.3 \mathrm{~cm}^{-1}$
$\lambda_{M}=? ?$
$\mathrm{R}=\mathrm{G}(\ell / \mathrm{A})=55 \times 10^{-5} \times 1.3 \mathrm{Scm}^{-1}$
$\lambda_{M}=\frac{\mathrm{K} \times 1000}{\text { Molarity }}=\frac{55 \times 1.3 \times 10^{-5} \times 1000}{5 \times 10^{-3}}$
$\lambda_{M}=11 \times 1.3 \times 10=11 \times 13=143 \mathrm{~S} \mathrm{~cm}^{+2} \mathrm{~mol}^{-1}$
$\lambda_{M}=\frac{143 \times 1000 \times 10^{-3} \mathrm{~S}}{\left(10^{-2} \mathrm{M}\right)^{-2}} \mathrm{~mol}^{-1}$
$\lambda_{M}=143 \times 1000 \times 10^{-4}(\mathrm{~m} . \mathrm{S}) \mathrm{m}^{2} \cdot \mathrm{~mol}^{-1}$
$=14.3$
Ans. $\lambda_{M}=14$ Nearest integer
3. The number of orbitals with $n=5, m_{1}=+2$ is \qquad . (Round off to the Nearest Integer).
Ans. 3
Sol. For $\mathrm{n}=5$
$\ell=0,1,2,3,4$
$\ell=2 \rightarrow m=-2,-1,0,+1,+2$
$\ell=3 \rightarrow m=-3,-2,-1,0,+1,+2,+3$
$\ell=4 \rightarrow m=-4,-3,-2,-1,0,+1,+2,+3,+4$
Total no. of orbitals $=3$
4. A and B decompose via first order kinetics with half-lives 54.0 min and 18.0 min respectively. Starting from an equimolarnon reactive mixture of A and B, the time taken for the concentration of A to become 16 times that of B is \qquad min. (Round off to the Nearest Integer).
Ans. 108
Sol. $A \xrightarrow{1^{\text {st }} \text { order }} t_{1 / 2}(A)=54$

$$
B \xrightarrow{1^{s t} \text { order }} t_{1 / 2}(B)=18
$$

$A_{0}=B_{0}=N_{0}$
$A_{t}=\frac{A_{0}}{2^{t} / 54}$
$B_{t}=\frac{B_{0}}{2^{t} / 18}$
$A_{t}=16 . B_{t}$
$\frac{A_{0}}{2^{\mathrm{t}} / 54}=16 \times \frac{\mathrm{B}_{0}}{2^{\mathrm{t}} / 18}$

$$
2^{t / 18-t / 54}=16
$$

$2^{2 t / 54}=16=2^{4}$

$$
2 t / 54=4
$$

$\mathrm{t}=108 \mathrm{~min}$
5. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ absorbs light of wavelength 498 nm during a d-d transition. The octahedral splitting energy for the above complex is \qquad $\times 10^{-19} \mathrm{~J}$. (Round off to the Nearest Integer).

$$
\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js} ; \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}
$$

Ans. (4)
Sol. $\Delta_{0}=\frac{\mathrm{hc}}{\lambda_{\mathrm{abs}}}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{498 \times 10^{-9}}$
$=\frac{6.626 \times 3}{498} \times 10^{-17}=0.0399 \times 10^{-17}=3.99 \times 10^{-19} \simeq 4 \times 10^{-19} \mathrm{~J}$
6. Sulphurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ has $\mathrm{Ka}_{1}=1.7 \times 10^{-2}$ and $\mathrm{Ka}_{2}=6.4 \times 10^{-8}$. The pH of $0.588 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$ is \qquad . (Round off to the Nearest Integer).
Ans. 5
Sol. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
$0.588 \mathrm{M}=\mathrm{C} \quad \mathrm{C} \alpha_{1} \quad \mathrm{C} \alpha_{1}+\mathrm{C} \alpha_{1} \alpha_{2}$
$\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$
$C \alpha_{1}\left(1-\alpha_{2}\right) \quad \mathrm{C} \alpha_{1} \alpha_{2} \quad \mathrm{C} \alpha_{1} \alpha_{2}$
$+$
$\mathrm{C} \alpha_{1}$
$\alpha_{1}=\sqrt{\frac{1.7 \times 10^{-2}}{0.588}}=\sqrt{\frac{17}{289 \times 2}}$
Therefore $\frac{\alpha_{1} \ll 1}{\left(1-\alpha_{1}\right) \simeq 1}$
Hence $\alpha_{2} \ll 1 \&\left(1-\alpha_{2}\right) \simeq 1$
$\therefore\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha_{1}$
$=\sqrt{\mathrm{Ka}_{1} \times \mathrm{C}}=\sqrt{17 \times 10^{-3} \times 0.588}$
$=99.98 \times 10^{-3}$
$\mathrm{pH}=1.99+3$
$=4.99 \simeq 5$
7. In Duma's method of estimation of nitrogen, 0.1840 g of an organic compound gave 30 mL of nitrogen collected at 287 K and 758 mm of Hg pressure. The percentage composition of nitrogen in the compound is \qquad . (Round off to the Nearest Integer).
[Given: Aqueous tension at $287 \mathrm{~K}=14 \mathrm{~mm}$ of Hg]
Ans. 19
Sol. Moles of $\mathrm{N}_{2}=\frac{(758-14)}{760} \times \frac{30 \times 10^{-3}}{0.0821 \times 287}$
$=1.246 \times 10^{-3} \mathrm{~mol}$
mass of $N=1.246 \times 10^{-3} \times 28$
mass \% of ' N ' $=\frac{\text { mass of ' } \mathrm{N} \text { ' }}{\text { totalmass }} \times 100$

$$
\begin{aligned}
& =\frac{1.246 \times 28 \times 10^{-3}}{0.184} \times 100 \\
& =\frac{124.6 \times 28}{0.184} \%=18.96 \% \\
& \simeq 19 \%
\end{aligned}
$$

8. Ga (atomic mass 70 u) crystallizes in a hexagonal close packed structure. The total number of voids in 0.581 g of Ga is \qquad $\times 10^{21}$. (Round off to the Nearest Integer).
[Given: $N_{A}=6.023 \times 10^{23}$]
Ans. 15

Sol. No. of moles of $\mathrm{Ga}=\frac{0.581}{70}$
No. of atoms of $\mathrm{Ga}=\frac{0.581}{70} \times \mathrm{N}_{\mathrm{A}}$
\therefore Total number of voids $=\frac{0.581}{70} \times \mathrm{N}_{\mathrm{A}} \times 3$

$$
\begin{aligned}
& =0.0249 \times 6 \times 10^{23} \\
& =15 \times 10^{21}
\end{aligned}
$$

(As there are one octahedral void and two tetrahedral voids per atom)
9. When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solution, \qquad $\times 10^{-5}$ moles of lead sulphate precipitate out. (Round off to the Nearest Integer).
Ans. 525
Sol. $3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\quad \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$35 \mathrm{ml} \quad 20 \mathrm{ml}$
$0.15 \mathrm{M} \quad 0.12 \mathrm{M}$
$=5.25 \mathrm{~m} \mathrm{~mol} \quad=2.4 \mathrm{~m} \mathrm{~mol}$
$3 \mathrm{PbSO}_{4} \downarrow+2 \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
Moles of $\mathrm{PbSO}_{4}=$ moles of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$=5.25 \mathrm{~m} \mathrm{~mol}$
$=525 \times 10^{-5} \mathrm{~mol}$
Ans. 525
10. At 363 K , the vapour pressure of A is 21 kPa and that of B is 18 kPa . One mole of A and 2 moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is
\qquad kPa. (Round off to the Nearest Integer).
Ans. 19
Sol. $\quad X_{A}=\frac{1}{1+2}=\frac{1}{3} \quad X_{B}=\frac{2}{3}$
$\mathrm{P}_{\mathrm{A}}^{\circ}=21 \mathrm{kPa} \quad \mathrm{P}_{\mathrm{B}}^{\circ}=18 \mathrm{kPa}$
$P_{\text {total }}=P_{A}^{\circ} X_{A}+P_{B}^{\circ} X_{B}$
$=21 \times \frac{1}{3}+18 \times \frac{2}{3}$
$=7+12$
$=19 \mathrm{kPa}$

