CHEMISTRY
 JEE-MAIN (MARCH-Attempt) 16 MARCH
 (Shift-1) Paper

Section-A

1. Among the following, the aromatic compounds are:
(A)

(B)

(C)

(D)

Choose the correct answer from the following options:
(1) (A) and (B) only
(2) (A), (B) and (C) only
(3) (B), (C) and (D) only
(4) (B) and (C) only

Ans. (4)
Sol.

2. Given below are two statements:

Statement I: $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as both oxidising and reducing agent in basic medium.
Statement II: In the hydrogen economy, the energy is transmitted in the form of dihydrogen.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is false but statement II is true
(2) Both Statement I and Statement II are true
(3) Statement I is true but statement II is false
(4) Both Statement I and Statement II are false

Ans. (2)
Sol. $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as oxidising \& reducing agent in both acidic \& basic medium.
3. Which of the following is Lindlar catalyst?
(1) Zinc chloride and HCl
(2) Partially deactivated palladised charcoal
(3) Sodium and Liquid NH_{3}
(4) Cold dilute solution of KMnO_{4}

Ans. (2)
Sol. Lindlar's catalyst $\Rightarrow \mathrm{Pd} / \mathrm{CaCo}_{3}+\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}+$ quinolene
4. In chromatography technique, the purification of compound is independent of:
(1) Length of the column or TLC plate
(2) Mobility or flow of solvent system
(3) Physical state of the pure compound
(4) Solubility of the compound

Ans. (3)
Sol. Based on NCERT
5. Which among the following pairs of Vitamins is stored in our body relatively for longer duration?
(1) Ascorbic acid and Vitamin D
(2) Thiamine and Ascorbic acid
(3) Vitamin A and Vitamin D
(4) Thiamine and Vitamin A

Ans. (3)
Sol. Based on NCERT
6.

In the above chemical reaction, intermediate " X " and reagent/condition " A " are:
(1)

(2) X-

(3) X-

(4) X-

Ans. (3)

Sol.

7. Which of the following reaction DOES NOT involve Hoffmann bromamide degradation?
(1)

(2)

(3)

(4)

 $\xrightarrow[\text { (iii) } \text { LiAlH } H_{4} / \mathrm{H}_{2} \mathrm{O}]{\text { (ii) } \mathrm{NH}_{3} / \Delta}$

Ans. (4)

Sol.

(1)

(2)

(3)

8. A group 15 element, which is a metal and forms a hydride with strongest reducing power among group 15 hydrides. The element is:
(1) Bi
(2) As
(3) P
(4) Sb

Ans. (1)
Sol. BiH_{3} is strongest reducing agent among the hydrides of 15 group elements as $\mathrm{Bi}-\mathrm{H}$ bond dissociation energy is very less.
9. Given below are two statement : One is labelled as Assertion A and the other is labelled as Reason R:
Assertion A: Size of Bk^{3+} ion is less than Np^{3+} ion.
Reason R: The aboveis a consequence of the lanthanoid contraction.
In the light of the above statements, choose the correct answer from the options given below:
(1) A is false but R is true
(2) Both A and R are true but R is not the correct explanation of A
(3) A is true but R is false
(4) Both A and R are true and R is the correct explanation of A

Ans. (4)
Sol. ${ }_{93} \mathrm{~Np}^{3+}{ }_{97} \mathrm{BK}^{3+}$ as atomic No. increase ionic size dec. (lanthanide/Actinide) contraction.
10.

The products " A " and " B " formed in above reactions are:
(1) A-

(2) A-

B-

(3) A-

B-

(4)

B-

Ans. (1)
Sol.

Hoff mann's alkene(B)
11. The type of pollution that gets increased during the day time and in the presence of O_{3} is :
(1) Global warming
(2) Reducing smog
(3) Acid rain
(4) Oxidising smog

Ans. (4)

Sol. $\mathrm{NO}+\mathrm{O}_{2} \longrightarrow \mathrm{NO}_{2}$
$\mathrm{NO}+\mathrm{O}_{3} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
$\mathrm{NO}_{2} \xrightarrow{\mathrm{hv}} \mathrm{NO}+[\mathrm{O}]$
$\mathrm{O}+\mathrm{O}_{2} \rightleftharpoons \mathrm{O}_{3}$
Bad ozone
$\mathrm{CH}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{CH}_{2}=\mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
Vehicle
Exhaust
12.

The product " P " in the above reaction is:
(1)

(2)

(3)

(4)

Ans. (4)

Sol.

13. Match List - I with List - II:

	List-I Industrial process		List-II Application
(a)	Haber's process	(i)	HNO_{3} synthesis
(b)	Ostwald's process	(ii)	Aluminium extraction
(c)	Contact process	(iii)	NH_{3} synthesis
(d)	Hall-Heroult process	(iv)	$\mathrm{H}_{2} \mathrm{SO}_{4}$ synthesis

Choose the correct answer from the options given below:
(1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
(2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
(3) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Ans. (4)
Sol. Habber's process is used for NH_{3} manufacture
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \xlongequal{\mathrm{Fe} / \mathrm{Mo}} 2 \mathrm{NH}_{3}$
Ostwald's process is used for perperational HNO_{3} by catalytic oxidation of NB
Contact process is used for preperation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ using $\mathrm{N}_{2} \mathrm{O}_{5}$ catalyst
Hall herowlt process is used for Al exhactium.
14. Given below are two statements:

Statement I: The E° value for $\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}$ is +1.74 V .
Statement II: Ce is more stable in Ce^{4+} state than Ce^{3+} state.
In the light of the above statements, choose the correct answer from the options given below:
(1) Both Statement I and Statement II are correct
(2) Statement I is incorrect but statement II is correct
(3) Both Statement I and Statement II are incorrect
(4) Statement I is correct but statement II is incorrect

Ans. (4)
Sol. Ce^{4+} is good oxidising agent as Ce^{3+} is more stable
$\mathrm{Ce}^{-4}+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+} \mathrm{E}^{\circ}=1.74$ volt
15. Given below are two statements:

Statement I: Both $\mathrm{CaCl}_{(2)} 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgCl}_{(2)} 8 \mathrm{H}_{2} \mathrm{O}$ undergo dehydration on heating.
Statement II: BeO is amphoteric whereas the oxides of other elements in the same group are acidic.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is true but statement II is false
(2) Both Statement I and Statement II are false
(3) Statement I is false but statement II is true
(4) Both Statement I and Statement II are true

Ans. (2)
Sol. $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{MgCl}(\mathrm{OH})+\mathrm{H}_{2} \mathrm{O}$
Among alkaline earth metal BeO is amphateric \& rest are basic oxide
16. Assertion A :Enol form acetone $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ exists in $<0.1 \%$ quantity. However, the enol form the acetyl acetone $\left[\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{OCCH}_{3}\right]$ exists in approximately 15% quantity.
Reason R: Enol form of acetyl acetone is stabilized by intramolecular hydrogen bonding, which is not possible in enol form of acetone.
Choose the correct statement:
(1) A is true but R is false
(2) Both A and R are true but R is the correct explanation of A
(3) A is false but R is true
(4) Both A and R are true but R is not the correct explanation of A

Ans. (2)
Sol.

17. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason
Assertion A: The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in water molecule is 104.5°
ReasonR: The lone pair - Ione pair repulsion of electrons is higher than the bond pair-bond pair repulsion.
In the light of the above statements, choose the correct answer from the options given below:
(1) A is false but R is true
(2) A is true but R is false
(3) Both A and R are true, and R is the correct explanation of A
(4) Both A and R are true, but R is not the correct explanation of A

Ans. (3)
Sol.

2bp \& 2-L.P.
in water O atom is sp^{3} hybridised with 2 B.P \& 2 L.P
18. Match List - I with List - II:

	List-I Name of oxo acid		List-II Oxidation state of 'P'
(a)	Hypophosphorous acid	(i)	+5
(b)	Orthophosphoric acid	(ii)	+4
(c)	Hypophosphoric acid	(iii)	+3
(d)	Orthophosphorous acid	(iv)	+2
		(v)	+1

Choose the correct answer from the options given below:
(1) (a)-(iv), (b)-(v), (c)-(ii), (d)-(iii)
(2) (a)-(v), (b)-(iv), (c)-(ii), (d)-(iii)
(3) (a)-(v), (b)-(i), (c)-(ii), (d)-(iii)
(4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Ans. (3)
Sol. Hypophosphorous acid
Orthophosphoric acid
Hypophosphoric acid
Orthophosphorous acid

$$
\begin{gathered}
+1 \\
\mathrm{H}_{3} \mathrm{PO}_{2} \\
+5 \\
+\mathrm{H}_{3} \mathrm{PO}_{4} \\
+4 \\
\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6} \\
+3 \\
\mathrm{H}_{3} \mathrm{PO}_{3}
\end{gathered}
$$

19. The process that involves the removal of sulphur from the ores is:
(1) Refining
(2) Roasting
(3) Smelting
(4) Leaching

Ans. (2)
Sol. Rosting removes S as SO_{2}
$\mathrm{S}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2}$
20. The functions of antihistamine are :
(1)Antiallergic and Analgesic
(2) Antacid and antiallergic
(3)Antiallergic and antidepressant
(4) Analgesic and antacid

Ans. (2)
Sol. Based on NCERT

Section-B

1. $2 \mathrm{MnO}_{4}^{-}+\mathrm{bC}_{2} \mathrm{O}_{4}^{2-}+\mathrm{cH}^{+} \rightarrow \mathrm{xMn}^{2+}+\mathrm{yCO}_{2}+\mathrm{zH}_{2} \mathrm{O}$

If the above equation is balanced with integer coefficients, the value of c is \qquad .
(Round off to the Nearest Integer).
Ans. 16
Sol. $16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
2. Complete combustion of 750 g of an organic compound provides 420 g of CO_{2} and 210 g of $\mathrm{H}_{2} \mathrm{O}$. The percentage composition of carbon and hydrogen in organic compound is 15.3 and \ldots respectively. (Round off to the Nearest Integer).
Ans. 3
Sol. Liebeig method:

$$
\begin{aligned}
\% \text { of H-element }= & \frac{2}{18} \times \frac{\text { Mass of } \mathrm{H}_{2} \mathrm{O}}{\text { Mass of compound }} \times 100 \\
& =\frac{2}{18} \times \frac{210}{750} \times 100=3.11 \simeq 3
\end{aligned}
$$

3. $A B_{2}$ is 10% dissociated in water to A^{2+} and B^{-}. The boiling point of a 10.0 molal aqueous solution of $A B_{2}$ is \qquad ${ }^{\circ} \mathrm{C}$. (Round off to the Nearest Integer).
[Given: Molal elevation constant of water $\mathrm{K}_{\mathrm{b}}=0.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ boiling point of pure water $=$ $100^{\circ} \mathrm{C}$]
Ans. 106
Sol. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$
$\propto=\frac{i-1}{n-1}$
$0.1=\frac{i-1}{(3-1)}\left\{\mathrm{AB}_{2} \rightleftharpoons \mathrm{~A}^{2+}+2 \mathrm{~B}^{-}\right\}$
$\mathrm{i}=1.2$
$\Delta \mathrm{T}_{\mathrm{b}}=1.2 \times 0.5 \times 10=6$
$\left(T_{b}\right)_{\text {solution }}=106^{\circ} \mathrm{C}$
4. A certain element crystallises in a bcc lattice of unit cell edge length $27 \AA \AA$. If the same element under the same conditions crystallises in the fcc lattice, the edge length of the unit cell in \AA will be \qquad . (Round off to the Nearest Integer).
[Assume each lattice point has a single atom]
[Assume $\sqrt{3}=1.73, \sqrt{2}=1.41$]
Ans. 33
Sol. For BCC unit cell, $\sqrt{3} a=4 R$
$a=\frac{4 R}{\sqrt{3}}=27$
$R=\frac{27 \sqrt{3}}{4}$
For fcc unit cell
$\sqrt{2} a=4 R$
$a=\frac{4}{\sqrt{2}}\left(\frac{27 \sqrt{3}}{4}\right)$
$a=27 \sqrt{\frac{3}{2}}$
$a=33.12 \approx 33$
5. The equivalents of ethylene diamine required to replace the neutral ligands from the coordination sphere of the trans-complex of $\mathrm{CoCl}_{(3)} 4 \mathrm{NH}_{3}$ is \qquad . (Round off to the Nearest Integer).
Ans. (2)
Sol. $\mathrm{COCl}_{3} .4 \mathrm{NH}_{3}$ or $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

6. For the reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})$ at $495 \mathrm{~K}, \Delta_{\mathrm{r}} \mathrm{G}^{\circ}=-9.478 \mathrm{~kJ} \mathrm{~mol}^{-(1)}$

If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is \qquad millimoles. (Round off to the Nearest Integer).
$\left.[\mathrm{R}=8.314] \mathrm{mol}^{-1} \mathrm{~K}^{-1} ; \ln 10=(2) 303\right]$
Ans. 20
Sol. $\quad \Delta G^{\circ}=-R T$ In Keq
$-9.478 \times 10^{3}=-495 \times 8.314 \mathrm{In}$ Keq
$\ln \mathrm{Keq}=2.303=\ln 10$
So, $\mathrm{Keq}=10$
Now, $\quad \mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})$
$t=0 \quad 22 \quad 0$
$\mathrm{t}=\mathrm{t} \quad 22-\mathrm{x} \quad \mathrm{x}$
Keq $=\frac{[B]}{[A]}=\frac{x}{(22-x)}=10$
$x=20$
So, millimoles of $B=20$
7. When light of wavelength 248 nm falls on a metal of threshold energy 3.0 eV , the de-Broglie wavelength of emitted electrons is \qquad \AA. (Round off to the Nearest Integer).
[Use : $\sqrt{3}=1.73, \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js}$
$\left.\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} ; \mathrm{c}=3.0 \times 10^{8} \mathrm{~ms}^{-1} ; 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right]$
Ans. 9
Sol. $\lambda=248 \times 10^{-9} \mathrm{~m}$
$\mathrm{w}_{0}=3 \times 1.6 \times 10^{-19} \mathrm{~J}$
$E=W_{0}+K . E$.
$\frac{h c}{\lambda}=W_{0}+K . E$.
$K . E=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{248 \times 10^{-19}}-3 \times 1.6 \times 10^{-19}$
$=3.2 \times 10^{-19} \mathrm{~J}$
$P=\sqrt{2 \mathrm{mK} . \mathrm{E}}$.
$P=\sqrt{2 \times 9.1 \times 10^{-31} \times 3.2 \times 10^{-19}}$
$\mathrm{P}=7.63 \times 10^{-25}$
$\therefore \lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{6.626 \times 10^{-34}}{7.63 \times 10^{-25}}$
$\lambda=8.7 \times 10^{-10}=8.7 \AA \approx 9$
8. A 6.50 molal solution of KOH (aq.) has a density of $1.89 \mathrm{~g} \mathrm{~cm}^{-3}$ The molarity of the solution is
\qquad moldm ${ }^{-3}$ (Round off to the Nearest Integer).
[Atomic masses : K : 39.0 u ; O: $16.0 \mathrm{u} ; \mathrm{H}: 1.0 \mathrm{u}$]
Ans. 9
Sol. $\quad m=\frac{1000 \times M}{1000 \times d-M \times M_{\text {solute }}}$
$6.5=\frac{1000 \times M}{1890-M \times 56}$
$12285-364 \mathrm{M}=1000 \mathrm{M}$
$1364 \mathrm{M}=12285$
$M=9$
9. Two salts $A_{2} X$ and $M X$ have the same value of solubility product of 4.0×10^{-12} The ratio of their molar solubilities i.e. $\frac{S\left(A_{2} X\right)}{S(M X)}=$ \qquad . (Round off to the Nearest Integer).
Ans. 50
Sol. $\quad \mathrm{AX}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{A}^{2+}(\mathrm{aq})+2 \mathrm{X}^{-}(\mathrm{aq})$
Solubility: (x) $\frac{\text { mole }}{L}$
(x) (x)
$\Rightarrow \mathrm{K}_{\mathrm{sp}}=4 \times 10^{-12}=\left[\mathrm{A}^{2+}\right]\left[\mathrm{x}^{-}\right]^{2}=4 \mathrm{x}^{3}$
$\Rightarrow \mathrm{x}=10^{-4}=\mathrm{S}_{\mathrm{AX}_{2}}$

$$
\mathrm{Bx}(\mathrm{~s}) \quad \rightleftharpoons \mathrm{B}^{+}(\mathrm{aq})+\mathrm{x}^{-}(\mathrm{aq})
$$

Solubility: (y) $\frac{\text { mole }}{\mathrm{L}}$ (y)
(y)
$\Rightarrow \mathrm{K}_{\mathrm{sp}}=4 \times 10^{-12}=\left[\mathrm{B}^{-}\right]\left[\mathrm{x}^{-}\right]=\mathrm{y}^{2}$
$\Rightarrow y=2 \times 10^{-6}=S_{B x}$
$\Rightarrow \frac{\mathrm{S}_{\mathrm{Ax} 2}}{\mathrm{~S}_{\mathrm{BX}}}=\frac{10^{-4}}{2 \times 10^{-6}}=50$
10. The decomposition of formic acid on gold surface follows first order kinetics. If the rate constant at 300 K is $1.0 \times 10^{-3} \mathrm{~s}^{-1}$ and the activation energy $\mathrm{E}_{\mathrm{a}}=11.488 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the rate constant at 200 K is \qquad $\times 10^{-5} \mathrm{~s}^{-1}$. (Round off to the Nearest Integer).
Ans. 10
Sol. $\log \frac{K_{2}}{K_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
$\log \frac{1.0 \times 10^{-3} \mathrm{~s}^{-1}}{\mathrm{~K}_{1}}=\frac{11.488 \times 1000}{2.303 \times 8.314}\left[\frac{1}{200}-\frac{1}{300}\right]$
$\log \frac{10^{-3}}{\mathrm{~K}_{1}}=600 \times \frac{3-2}{600} \log \frac{10^{-3}}{\mathrm{~K}_{1}}=1 \Rightarrow 10=\frac{10^{-3}}{\mathrm{~K}_{1}}$
$\Rightarrow K_{1}=10^{-4}$ So, $x \times 10^{-5}=10^{-4} \Rightarrow x=10$
(Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{Mol}^{-1} \mathrm{~K}^{-1}$)

