CHEMISTRY JEE-MAIN (MARCH-Attempt) 16 MARCH (Shift-1) Paper

Section-A

1. Among the following, the aromatic compounds are:

Choose the correct answer from the following options:

(1) (A) and (B) only (2) (A), (B) and (C) only

(3) (B), (C) and (D) only

(4) (B) and (C) only

Ans. Sol. (4)

2. Given below are two statements:

Statement I: H_2O_2 can act as both oxidising and reducing agent in basic medium. Statement II: In the hydrogen economy, the energy is transmitted in the form of dihydrogen. In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but statement II is true
- (2) Both Statement I and Statement II are true
- (3) Statement I is true but statement II is false
- (4) Both Statement I and Statement II are false

Ans. (2)

- **Sol.** H_2O_2 can act as oxidising & reducing agent in both acidic & basic medium.
- **3.** Which of the following is Lindlar catalyst?
 - (1) Zinc chloride and HCl
 - (2) Partially deactivated palladised charcoal
 - (3) Sodium and Liquid NH₃
 - (4) Cold dilute solution of KMnO₄
- Ans. (2)
- **Sol.** Lindlar's catalyst \Rightarrow Pd/CaCo₃ + (CH₃COO)₂ Pb + quinolene

- **4.** In chromatography technique, the purification of compound is independent of:
 - (1) Length of the column or TLC plate
 - (2) Mobility or flow of solvent system
 - (3) Physical state of the pure compound
 - (4) Solubility of the compound

Ans. (3)

- Sol. Based on NCERT
- **5.** Which among the following pairs of Vitamins is stored in our body relatively for longer duration?

OH

- (1) Ascorbic acid and Vitamin D
- (3) Vitamin A and Vitamin D
- (2) Thiamine and Ascorbic acid
- (4) Thiamine and Vitamin A

- Ans. (3)
- Sol. Based on NCERT

NH₂

(3) X-
$$N_2^+Cl^-$$
 (4) X- NO_2 ; A-H₂O/ Δ

Ans. (3) Sol.

7. Which of the following reaction DOES NOT involve Hoffmann bromamide degradation?

- **8.** A group 15 element, which is a metal and forms a hydride with strongest reducing power among group 15 hydrides. The element is:
 - (1) Bi (2) As (3) P (4) Sb
- Ans. (1)
- **Sol.** BiH₃ is strongest reducing agent among the hydrides of 15 group elements as Bi H bond dissociation energy is very less.
- **9.** Given below are two statement : One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: Size of Bk^{3+} ion is less than Np^{3+} ion.

Reason R: The aboveis a consequence of the lanthanoid contraction.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is false but R is true
- (2) Both A and R are true but R is not the correct explanation of A
- (3) A is true but R is false
- (4) Both A and R are true and R is the correct explanation of A
- Ans. (4)
- **Sol.** $_{q_3}Np^{3+} _{q_7}BK^{3+}$ as atomic No. increase ionic size dec. (lanthanide/Actinide) contraction.

13. Match List – I with List – II:

	List-I Industrial process		List-II Application	
(a)	Haber's process	(i)	HNO ₃ synthesis	
(b)	Ostwald's process	(ii)	Aluminium extraction	
(C)	Contact process	(iii)	NH ₃ synthesis	
(d)	Hall-Heroult process	(iv)	H ₂ SO ₄ synthesis	

Choose the correct answer from the options given below:

- (1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- Ans. (4)
- **Sol.** Habber's process is used for NH₃ manufacture

 $N_2 + 3H_2 \xleftarrow{Fe/Mo}{2NH_3}$

Ostwald's process is used for perperational HNO₃ by catalytic oxidation of NB Contact process is used for preperation of H_2SO_4 using N_2O_5 catalyst Hall herowlt process is used for Al exhactium.

- **14.** Given below are two statements:
 - Statement I: The E° value for Ce^{4+}/Ce^{3+} is +1.74 V.

Statement II: Ce is more stable in Ce^{4+} state than Ce^{3+} state.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Statement I is incorrect but statement II is correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but statement II is incorrect
- Ans. (4)
- **Sol.** Ce⁴⁺ is good oxidising agent as Ce³⁺ is more stable Ce⁻⁴ + e⁻ \rightarrow Ce³⁺ E[°] = 1.74 volt
- Given below are two statements: Statement I: Both CaCl₍₂₎6H₂O and MgCl₍₂₎8H₂O undergo dehydration on heating. Statement II: BeO is amphoteric whereas the oxides of other elements in the same group are acidic.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but statement II is false
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but statement II is true
- (4) Both Statement I and Statement II are true
- Ans. (2)
- **Sol.** $CaCl_2.6H_2O \xrightarrow{A} CaCl_2 + 6H_2O$ MgCl_2.6H_2O \longrightarrow MgCl(OH) + H_2O Among alkaline earth metal BeO is amphateric & rest are basic oxide
- **16. Assertion A** :Enol form acetone [CH₃COCH₃] exists in <0.1% quantity. However, the enol form the acetyl acetone [CH₃COCH₂OCCH₃] exists in approximately 15% quantity. **Reason R:** Enol form of acetyl acetone is stabilized by intramolecular hydrogen bonding, which

is not possible in enol form of acetone.

Choose the correct statement:

- (1) A is true but R is false
- (2) Both A and R are true but R is the correct explanation of A
- (3) A is false but R is true
- (4) Both A and R are true but R is not the correct explanation of A

Ans.

(2)

Sol.

17. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason

Assertion A: The H–O–H bond angle in water molecule is 104.5°

ReasonR: The lone pair – lone pair repulsion of electrons is higher than the bond pair-bond pair repulsion.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is false but R is true
- (2) A is true but R is false
- (3) Both A and R are true, and R is the correct explanation of A
- (4) Both A and R are true, but R is not the correct explanation of A

Ans. (3) Sol.

Ans.

2bp & 2-L.P.

in water O atom is sp³ hybridised with 2 B.P & 2 L.P

18. Match List – I with List – II:

1					1	
		List-I		List-II		
		Name of oxo acid		Oxidation state of 'P'		
	(a)	Hypophosphorous acid	(i)	+5		
	(b)	Orthophosphoric acid	(ii)	+4		
	(C)	Hypophosphoric acid	(iii)	+3		
	(d)	Orthophosphorous acid	(iv)	+2		
			(v)	+1		

Choose the correct answer from the options given below:

(1) (a)-(iv), (b)-(v), (c)-(ii), (d)-(iii) (2) (a)-(v), (b)-(iv), (c)-(ii), (d)-(iii) (3) (a)-(v), (b)-(i), (c)-(ii), (d)-(iii) (4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii) (3) +1

Sol.Hypophosphorous acid H_3PO_2
+5
Orthophosphoric acid H_3PO_4
+4
Hypophosphoric acidHypophosphoric acid $H_4P_2O_6$
+3
Orthophosphorous acid H_3PO_3

- **19.** The process that involves the removal of sulphur from the ores is: (1) Refining (2) Roasting (3) Smelting (4) Leaching
- Ans. (2)
- **Sol.** Rosting removes S as SO_2 S + $O_2 \longrightarrow SO_2$
- 20. The functions of antihistamine are :
 (1)Antiallergic and Analgesic
 (3)Antiallergic and antidepressant
- (2) Antacid and antiallergic
- (4) Analgesic and antacid

- Ans. (2)
- Sol. Based on NCERT

Section-B

1. $2MnO_4^- + bC_2O_4^{2-} + cH^+ \rightarrow xMn^{2+} + yCO_2 + zH_2O_2$

If the above equation is balanced with integer coefficients, the value of c is______. (Round off to the Nearest Integer).

Ans. 16

Sol. $16H^+ + 2MnO_4^- + 5C_2O_4^{2-} \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

- 2. Complete combustion of 750 g of an organic compound provides 420 g of CO_2 and 210 g of H_2O . The percentage composition of carbon and hydrogen in organic compound is 15.3 and respectively. (Round off to the Nearest Integer).
- Ans. 3
- **Sol.** Liebeig method:

% of H-element =
$$\frac{2}{18} \times \frac{\text{Mass of H}_2\text{O}}{\text{Mass of compound}} \times 100$$

= $\frac{2}{18} \times \frac{210}{750} \times 100 = 3.11 \simeq 3$

3. AB₂ is 10% dissociated in water to A²⁺ and B⁻. The boiling point of a 10.0 molal aqueous solution of AB₂ is ______ °C. (Round off to the Nearest Integer). [Given: Molal elevation constant of water $K_b = 0.5 \text{ K kg mol}^{-1}$ boiling point of pure water = 100°C]

Ans. 106

Sol. $\Delta T_b = iK_bm$

$$\infty = \frac{1-1}{n-1}$$

$$\begin{array}{l} 0.1 = \frac{i-1}{(3-1)} \ \{AB_2 \rightleftharpoons A^{2+} + 2B^-\} \\ i = 1.2 \\ \Delta T_b = 1.2 \times 0.5 \times 10 = 6 \\ (T_b)_{solution} = 106^{\circ}C \end{array}$$

4. A certain element crystallises in a bcc lattice of unit cell edge length 27Å. If the same element under the same conditions crystallises in the fcc lattice, the edge length of the unit cell in Å will be ______. (Round off to the Nearest Integer).

[Assume each lattice point has a single atom]

[Assume $\sqrt{3} = 1.73$, $\sqrt{2} = 1.41$]

Ans. 33

Sol. For BCC unit cell, $\sqrt{3}a = 4R$

$$a = \frac{4R}{\sqrt{3}} = 27$$
$$R = \frac{27\sqrt{3}}{4}$$

For fcc unit cell

$$\sqrt{2}a = 4R$$
$$a = \frac{4}{\sqrt{2}} \left(\frac{27\sqrt{3}}{4}\right)$$
$$a = 27\sqrt{\frac{3}{2}}$$
$$a = 33.12 \approx 33$$

5. The equivalents of ethylene diamine required to replace the neutral ligands from the coordination sphere of the trans-complex of CoCl₍₃₎ 4NH₃ is ______. (Round off to the Nearest Integer).

Ans. (2)

Sol.

Rankers Offline Centre - Near Keshav Kunj Restaurant | Pandeypur Varanasi - Call 9621270696

6. For the reaction $A(g) \rightleftharpoons B(g)$ at 495 K, $\Delta_r G^\circ = -9.478$ kJ mol⁻⁽¹⁾ If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is ______millimoles. (Round off to the Nearest Integer). [R = 8.314] mol⁻¹ K⁻¹; ln 10 = (2)303]

Ans. 20

Sol.

 $\Delta G^{\circ} = -RT \ln Keq$ -9.478 × 10³ = -495 × 8.314 ln Keq ln Keq = 2.303 = ln10 So, Keq = 10 Now, A(g) = B(g) t = 0 22 0 t = t 22-x x Keq = $\frac{[B]}{[A]} = \frac{x}{(22-x)} = 10$ x = 20 So, millimoles of B = 20

When light of wavelength 248 nm falls on a metal of threshold energy 3.0 eV, the de-Broglie wavelength of emitted electrons is ______Å. (Round off to the Nearest Integer).

[Use :
$$\sqrt{3} = 1.73$$
, h = 6.63×10^{-34} Js
m_e = 9.1×10^{-31} kg; c = 3.0×10^8 ms⁻¹; 1eV = 1.6×10^{-19} J]

Ans. 9

Sol.
$$\lambda = 248 \times 10^{-9} \text{m}$$

 $w_0 = 3 \times 1.6 \times 10^{-19} \text{ J}$
 $\text{E} = w_0 + \text{K.E.}$
 $\frac{\text{hc}}{\lambda} = W_0 + \text{K.E.}$
 $\text{K.E} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{248 \times 10^{-19}} - 3 \times 1.6 \times 10^{-19}$
 $= 3.2 \times 10^{-19} \text{ J}$
 $\text{P} = \sqrt{2 \text{mK.E.}}$
 $\text{P} = \sqrt{2 \times 9.1 \times 10^{-31} \times 3.2 \times 10^{-19}}$
 $\text{P} = 7.63 \times 10^{-25}$
 $\therefore \lambda = \frac{\text{h}}{\text{p}} = \frac{6.626 \times 10^{-34}}{7.63 \times 10^{-25}}$
 $\lambda = 8.7 \times 10^{-10} = 8.7\text{\AA} \approx 9$

A 6.50 molal solution of KOH (aq.) has a density of 1.89 g cm⁻³The molarity of the solution is 8. _____ moldm⁻³ (Round off to the Nearest Integer). [Atomic masses : K : 39.0 u; O: 16.0 u; H: 1.0 u]

Ans. 9

 $m = \frac{1000 \times M}{1000 x d - M \times M_{solute}}$ Sol. $6.5 = \frac{1000 \times M}{1890 - M \times 56}$ 12285 - 364M = 1000M 1364 M = 12285M = 9

Two salts A_2X and MX have the same value of solubility product of 4.0×10^{-12} The ratio of their 9. molar solubilities i.e. $\frac{S(A_2X)}{S(MX)} =$ ______. (Round off to the Nearest Integer).

Ans. 50 Sol.

$$AX_{2}(s) \rightleftharpoons A^{2+}(aq) + 2X^{-}(aq)$$
Solubility: (x) $\frac{mole}{L}$ (x) (x)
 $\Rightarrow K_{sp} = 4 \times 10^{-12} = [A^{2+}] [x^{-}]^{2} = 4x^{3}$
 $\Rightarrow x = 10^{-4} = S_{AX_{2}}$

$$Bx(s) \rightleftharpoons B^{+}(aq) + x^{-}(aq)$$
Solubility: (y) $\frac{mole}{L}$ (y) (y)
 $\Rightarrow K_{sp} = 4 \times 10^{-12} = [B^{-}][x^{-}] = y^{2}$
 $\Rightarrow y = 2 \times 10^{-6} = S_{Bx}$
 $\Rightarrow \frac{S_{Ax_{2}}}{S_{Bx}} = \frac{10^{-4}}{2 \times 10^{-6}} = 50$

- The decomposition of formic acid on gold surface follows first order kinetics. If the rate constant 10. at 300 K is 1.0×10^{-3} s⁻¹ and the activation energy $E_a = 11.488$ kJ mol⁻¹, the rate constant at 200 K is ______ × 10^{-5} s⁻¹.(Round off to the Nearest Integer).
- Ans. 10

Sol.
$$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

 $\log \frac{1.0 \times 10^{-3} \text{s}^{-1}}{K_1} = \frac{11.488 \times 1000}{2.303 \times 8.314} \left[\frac{1}{200} - \frac{1}{300} \right]$
 $\log \frac{10^{-3}}{K_1} = 600 \times \frac{3-2}{600} \quad \log \frac{10^{-3}}{K_1} = 1 \quad \Rightarrow 10 = \frac{10^{-3}}{K_1}$
 $\Rightarrow K_1 = 10^{-4} \text{ So, } x \times 10^{-5} = 10^{-4} \Rightarrow x = 10$
(Given: R = 8.314J Mol⁻¹ K⁻¹)