CHEMISTRY JEE-MAIN (January-Attempt) 11 January (Shift-2) Paper

SECTION - A

1. The hydride that is NOT electron deficient is :

- (A) AlH₃
- (B) GaH₂
- (C) SiH₄
- (D) $B_{2}H_{6}$

Sol. C

(1) B₂H₆: Electron deficient
(2) AlH₃: Electron deficient
(3) SiH₄: Electron precise
(4) GaH₃: Electron deficient

2. The reaction,

 $MgO(s) + C(s) \rightarrow Mg(s) + CO(g)$, for which $\Delta_r H^0 = +491.1 \text{ kJ mol}^{-1}$ and $\Delta_r S^0 = 198.0 \text{ JK}^{-1} \text{ mol}^{-1}$, is not feasible at 298 K. Temperature above which reaction will be feasible is :

- (A) 1890.0 K
- (B)2040.5 K
- (C) 2480.3 K
- (D) 2380.5 K

Sol. C

$$T_{eq} = \frac{\Delta H}{\Delta S}$$
$$= \frac{491.1 \times 1000}{198}$$
$$= 2480.3 \text{ K}$$

3. The higher concentration of which gas in air can cause stiffness of flower buds?

- (A) SO₂
- (B) NO₂
- (C) CO₂
- (D) CO

Sol. A

Due to acid rain in plants high concentration of SO₂ makes the flower buds stiff and makes them fall.

4. The homopolymer formed from 4-hydroxybutanoic acid is:

(A)
$$\begin{bmatrix} O \\ II \\ C(CH_2)_3 - O \end{bmatrix}_{n}$$

$$(B) = OC(CH_2)_3 - O = O$$

(C)
$$= \begin{bmatrix} 0 & 0 \\ || & || \\ C(CH_2)_2C-O \end{bmatrix}_n$$

$$(D) = \begin{bmatrix} 0 & 0 \\ || & || \\ C(CH_2)_2C \end{bmatrix}_n$$

Sol. A

It is a formation of polyester

5. Taj Mahal is being slowly disfigured and discoloured. This is primarily due to :

- (A) acid rain
- (B) global warming
- (C) soil pollution
- (D) water pollution

Sol. A

Taj mahal is slowely disfigured and discoloured due to acid rain.

- 6. The reaction that does NOT define calcination is:
 - (A) CaCO₃. MgCO₃ \longrightarrow CaO + MgO + 2CO₂
 - (B) Fe_2O_3 . $XH_2O \xrightarrow{\Delta} Fe_2O_3 + XH_2O$
 - (C) $ZnCO_3 \xrightarrow{\Delta} ZnO + CO_2$
 - (D) $2 Cu_2S + 3 O_2 \xrightarrow{\Delta} 2Cu_2O + 2SO_2$
- Sol.

Calcinatin in carried out for carbonates and oxide ores in absence of oxygen. Roasting is carried out mainly for sulphide ores in presence of excess of oxygen.

- 7. For the equilibrium,
 - $2 H_2 O = H_3 O^+ + O H^-$, the value of ΔG^0 at 298 K is approximately : (A) 100 kJ mol^{-1} (B) -80 kJ mol^{-1} (C) -100 kJ mol^{-1} (D) 80 kJ mol^{-1}

Sol.

$$2H_2O = H_3O + OH - K = 10^{-14}$$

$$\Delta G^{0} = RT / n K$$

$$=\,\frac{-8.314}{1000}\times298\times\ell n10^{-14}$$

- = 80 Ki/Mole
- 8. Among the colloids cheese (C), Milk (M) and smoke (S), the correct combination of the dispersed phase and dispersion medium, respectively is:
 - C: solid in liquid; M: solid is liquid; (A)
 - S: solid in gas
 - C: liquid in solid; M: liquid in liquid:
 - S: solid in gas
 - C: liquid in solid; M: liquid in solid; (C)
 - S: solid in gas C: solid in liquid; M: liquid in liquid;
 - S: gas in solid
- Sol.

	Dispersed Phase	Dispersion Medium
Cheese	Liquid	Solid
Milk	Liquid	Liquid
Smoke	Solid	Gas

9. The de Broglie wavelength (λ) associated with a photoelectron varies with the frequency (ν) of the incident radiation as, $[v_0]$ is threshold frequency]:

(A)
$$\lambda \propto \frac{1}{\left(v - v_0\right)^{\frac{3}{2}}}$$

(B)
$$\lambda \propto \frac{1}{(v-v_0)}$$

(C)
$$\lambda \propto \frac{1}{\left(v - v_0\right)^{\frac{1}{4}}}$$

(D)
$$\lambda \propto \frac{1}{(v-v_0)^{\frac{1}{2}}}$$

Sol.

For electron

 $\lambda_{DB} = \frac{\lambda}{\sqrt{2mK.E.}}$ (de broglie wavelength)

By photoelectric effect

 $hv = hv_0 + KE$

$$KE = hv - hv_0$$

$$\lambda_{DB} = \frac{h}{\sqrt{2m \times (hv - hv_0)}}$$

$$\lambda_{DB} \propto \frac{1}{(v - v_0)^{1/2}}$$

- 10. The number of bridging CO ligand(s) and Co—Co bond(s) in Co₂(Co)₈, respectively are: (A) 2 and 1 (B) 0 and 2 (C) 4 and 0 (D) 2 and 0
- Sol.

Bridging CO are and Co - Co bond is 1.

Match the following items in column I with the corresponding items in column II 11.

Column I ColumnII Na₂CO₃.10H₂O (i) (A) Portland cement ingredient (ii) Mg(HCO₃)₂ (B) Castner-Kellner process (iii) NaOH (C) Solvay process (D) Temporary hardness (iv) $(i) \rightarrow (D)$; $(ii) \rightarrow (A)$; $(iii) \rightarrow (B)$; $(iv) \rightarrow (C)$

- (A) (B)
- (i) \rightarrow (B); (ii) \rightarrow (C); (iii) \rightarrow (A); (iv) \rightarrow (D) (i) \rightarrow (C); (ii) \rightarrow (B); (iii) \rightarrow (D); (iv) \rightarrow (A) (i) \rightarrow (C); (ii) \rightarrow (D); (iii) \rightarrow (B); (iv) \rightarrow (A) (C) (D)
- Sol.

 $Na_2CO_3.10H_2O \rightarrow Solvay process$ $Mg(HCO_3)_2 \rightarrow Temporary hardness$ NaOH → Castner-kellner cell $Ca_3Al_2O_6 \rightarrow Portland cement$

Which of the following compounds will produce a precipitate with AgNO₃? 12.

Sol.

$$\begin{array}{c}
 & \xrightarrow{\text{AgNO}_3} \text{AgBr} + \\
 & \xrightarrow{\text{aromatic cation}}
\end{array}$$

as it can produce aromatic cation so will produce precipitate with AgNO3.

	Item I	Item II
(A)	Ester test	(P) Tyr
(B)	Carbylamine test	(Q) Asp
(C)	Phthalein dye test	(R) Ser
		(S) Lys
(A)	$(A) \rightarrow (Q) ; (B) \rightarrow (S)$	(S) ; $(C) \rightarrow (R)$
(B)	$(A) \rightarrow (R) ; (B) \rightarrow (S)$	(S) ; $(C) \rightarrow (Q)$
(C)	$(A) \rightarrow (R) ; (B) \rightarrow (C)$	$Q)\;;\;(C)\to(P)$
 \	(4) (0) (5) (a) (a) (b)

(D) Sol.

(P) Tyrosine Tyr OH—
$$CH_2$$
-CH-C-OH

 $(A) \rightarrow (Q)$; $(B) \rightarrow (S)$; $(C) \rightarrow (P)$

(Q) Aspartic ASP Acid
$$\begin{array}{ccc} O & NH_2 O \\ II & I & II \\ H-O-C-CH_2-CH-C-OH \end{array}$$

(A) Ester test

- (Q) Aspartic acid (Acidic amino acid)
- Carbylamine (B)
- (S) Lysine [NH₂ group present]
- (C) Phthalein dye
- (P) Tyrosine {Phenolic group present}

the major product obtained in the following conversion is : 14.

$$\begin{array}{c} \text{CH}_{3} \\ \text{O} \\ \\ \text{MeOH} \end{array}$$

- **15.** A compound 'X' on treatment with $Br_2/NaOH$, provided C_3H_9N , which gives positive carbylamine test. Compound 'X' is :
 - (A) CH₃CON(CH₃)₂

(B) CH₃CH₂COCH₂NH₂

(C) CH₃CH₂CH₂CONH₂

(D) CH₃COCH₂NHCH₃

Sol. C

$$[X] \xrightarrow{Br_2} C_3H_9N \xrightarrow{CHCl_3} CH_3CH_2CH_2-NC$$
Hoff mann's
Bromaide
degradation
$$Reaction$$

Thus [X] must be aride with oen carbon more than is amine Thus [X] is $CH_2CH_2CONH_2$

The correct option with respect to the Pauling electronegativity values of the elemetrs is : (A) Si < Al (B) Te > Se (C) P > S (D) Ga < Ge

Sol. D

B C Al Si Ga<Ge

Along the period electronegativity increases

25 ml of the given HCl solution requires 30 mL of 0.1 M sodium carbonate solution. What is the volume of this HCl solution required to titrate 30 mL of 0.2 M aqueous NaOH solution?
(A) 75 mL
(B) 50 mL
(C) 25 mL
(D) 12.5 mL

Sol. C

HCl with Na₂CO₃ Eq. of HCl = Eq. of Na₂CO₃

$$\frac{25}{1000} \times M \times 1 = \frac{30}{1000} \times 0.1 \times 2$$

$$M = \frac{6}{25}M$$

Eq of HCl = Eq. of NaOH

$$\frac{6}{25} \times 1 \times \frac{V}{1000} = \frac{30}{1000} \times 0.2 \times 1$$

 $V = 25 \, ml$

18. The major product obtained in the following reaction is:

(A)
$$OH$$
 OH
 OH
 OH
 OH

(C)
$$OH$$
 CH_3
 OH

$$(D) \bigvee_{NO_2}^{OH} CH_3$$

Sol. B

LiAlH₄ will not affect C=C in this compound.

19. The radius of the largest sphere which fits properly at the centre of the edge of a body centred cubic unit cell is: (Edge length is represented by `a')

(A) 0.067 a

Sol. A

$$a = 2(R + r)$$

$$\frac{a}{2} = (R + r) \dots (1)$$

$$a\sqrt{3} = 4R ...(2)$$

$$\frac{a}{2} = \frac{a\sqrt{3}}{4} = r$$

$$a\left(\frac{2-\sqrt{3}}{4}\right)=r$$

$$r = 0.067a$$

20. The reaction $2X \rightarrow B$ is a zeroth order reaction. If the initial concentration of X is 0.2 M, the halflife is 6 h. When the initial concentration of X is 0.5 M, the time required to reach its final concentration of 0.2 M will be:

(A) 12.0 h

(B) 9.0 h

(C) 7.2 h

(D) 18.0 h

Sol. D

For zero order

$$[A_0]-[A_t] = kt$$

$$0.2 - 0.1 = k \times 6$$

$$k = \frac{1}{60} M / hr$$

and
$$0.5-0.2 = \frac{1}{60} \times t$$

t = 18 hrs.

21. The standard reaction Gibbs energy for a chemical reaction at an absolute temperature T is given

$$\Delta_{r}G^{o} = A - BT$$

Where A and B are non-zero constants. Which of the following is TRUE about this reaction?

- (A) Exothermic if B < 0
- (B) Exothermic if A > 0 and B < 0
- (C) Endothermic if A > 0
- (D) Endothermic if A < 0 and B > 0
- Sol.

Theory

- 22. K_2HgI_4 is 40% ionised in aqueous solution. The value of its van't Hoff factor (i) is (A) 2.0 (B) 1.8 (C) 2.2(D) 1.6
- Sol. В

For
$$K2[HgI_4]$$

i = 1 + 0.4 (3 - 1)
= 1.8

23. The correct match between item I and item II is :-

Item I		Item II	
(A)	Allosteric effect	(P)	Molecule binding to the active site of enzyme
(B)	Competitive inhibitor	(Q)	Molecule crucial for communication in the body
(C)	Receptor	(R)	Molecule binding to a site other than the active site of enzyme
(D)	Poison	(S)	Molecule binding to the enzyme covalently

- (A) $(A) \rightarrow (P)$; $(B) \rightarrow (R)$; $(C) \rightarrow (Q)$; $(D) \rightarrow (S)$
- $(A) \rightarrow (P)$; $(B) \rightarrow (R)$; $(C) \rightarrow (S)$; $(D) \rightarrow (Q)$ $(A) \rightarrow (R)$; $(B) \rightarrow (P)$; $(C) \rightarrow (S)$; $(D) \rightarrow (Q)$ (B)
- (C)
- $(A) \rightarrow (R)$; $(B) \rightarrow (P)$; $(C) \rightarrow (Q)$; $(D) \rightarrow (S)$ (D)

Sol. D

24. In the following compound,

The favourable site/s for protonation is/are :

- (A) a and e
- (B) a
- (C) b, c and d
- (D) a and d

Sol. C

Localised lone pair e-.

25. Given the equilibrium constant;

 K_c of the reaction :

$$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$$
 is

 $10\times10^{\scriptscriptstyle 15},$ calculate the $\rm E^o_{\scriptscriptstyle cell}$ of this reaction at 298 K

$$2.303 \frac{RT}{F}$$
 at 298 K = 0.059V

- (A) 0.04736 V
- (B) 0.4736 V
- (C) 0.4736 mV (D) 0.0

Sol. E

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}_{\mathsf{cell}}^0 - \frac{0.059}{\mathsf{n}} \mathsf{log} \, \mathsf{Q}$$

At equilibrium

$$\mathsf{E}_{\mathsf{cell}} = \frac{0.059}{\mathsf{n}} \mathsf{log} 10^{16}$$

- $= 0.059 \times 8$
- = 0.472 V

26. The coordination number of Th in $K_4[Th(C_2O_4)_4(OH_2)_2]$ is :

$$(C_2O_4^{2-} = oxalato)$$

- (A) 10
- (B) 8
- (C) 6 (D) 14

Sol. A

 $C_2O_4^{2-}$ (oxalato) : bidentate

H₂O (aqua): Monodentate

27. The major product of the following reaction is :

$$(A) CI \longrightarrow (B) HO \longrightarrow (D)$$

$$(A) CI \longrightarrow (B) HO \longrightarrow (D)$$

Sol. D

28. $\underline{A} \xrightarrow{4KOH,O_2} 2\underline{B} + 2H_2O$ (Green)

$$3\underline{B} \xrightarrow{4 \text{ HCl}} 2\underline{C} + \text{MnO}_2 + 2H_2O$$
(Purple)

$$2\underline{C} \xrightarrow{H_2O,KI} 2\underline{A} + 2 KOH + \underline{D}$$

In the above sequence of reactions, \underline{A} and \underline{D} , respectively, are :

- (A) KI and KMnO₄
- (B) MnO₂ and KlO₃
- (C) Kl and K₂MnO₄
- (D) KIO_3^2 and MnO_2^3

Sol. B

$$MnO_{2}(A) \xrightarrow{4KOH,O_{2}} 2K_{2}MnO_{4}(B) + 2H_{2}O$$
(Green)
$$3K_{2}MnO_{4}(B) \xrightarrow{4HCL} 2K_{2}MnO_{4}(C) + 2H_{2}O$$
(Purple)
$$3K_{2}MnO_{4}(C) \xrightarrow{H_{2}O,KI} 2MnO_{2}(A) + 2KOH + KIO_{3}(D)$$

$$A \rightarrow MnO_{2}$$

$$D \rightarrow KIO_{3}$$

29. The relative stability of +1 oxidation state of group 13 elements follows the order :

(B)
$$Ga < Al < In < Tl$$

(C) TI < In < Ga < AI

(D) AI < Ga < TI < In

Sol. A

Due to inert pair effect as we move down the group in 13th group lower oxidation state becomes more stable.

AI<Ga<In<Tℓ

30. Which of the following compounds reacts with ethylmagnesium bromide and also decolourizes bromine water solution:

$$CN$$
 O CH_3 CH CH_2 CH_2 CH_2 CH_2 CH_3 CH CH_2

Sol. C, D

declolourizes Bromine water

