PHYSICS

JEE-MAIN (January-Attempt) 10 January (Shift-1) Paper

 SECTION - A

 SECTION - A}

1. Using a nuclear counter the counter rate of emitted particles from a radioactive source is measured. At $t=0$ it was 1600 counts per second and $t=8$ seconds it was 100 counts per second. The count rate observed, as counts per second, at $t=6$ seconds is close to -
(A) 360
(B) 150
(C) 400
(D) 200

Sol. D
at $\mathrm{t}=0, \mathrm{~A}_{0}=\frac{\mathrm{dN}}{\mathrm{dt}}=1600 \mathrm{C} / \mathrm{s}$
at $t=8 \mathrm{~s}, \mathrm{~A}=100 \mathrm{C} / \mathrm{s}$
$\frac{A}{A_{0}}=\frac{1}{16}$ in 8 sec
Therefor half life is $t_{1 / 2}=2 \mathrm{sec}$
\therefore Activity at $\mathrm{t}=6$ will be $1600\left(\frac{1}{2}\right)^{3}$
$=200 \mathrm{C} / \mathrm{s}$
2. In the cube of side 'a' shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be -

(A) $\frac{1}{2} a(\hat{j}-\hat{i})$
(B) $\frac{1}{2} a(\hat{i}-\hat{k})$
(C) $\frac{1}{2} a(\hat{j}-\hat{k})$
(D) $\frac{1}{2} a(\hat{k}-\hat{i})$

Sol. A
$\vec{r}_{g}=\frac{a}{2} \hat{i}+\frac{a}{2} \hat{k}$
$\vec{r}_{H}=\frac{a}{2} \hat{j}+\frac{a}{2} \hat{k}$
$\vec{r}_{H}-\vec{r}_{g}=\frac{a}{2}(\hat{j}-\hat{i})$
3. A string of length 1 m and mass 5 g is fixed at both ends. The tension in the string is 8.0 N . The string is set into vibration using an external vibrator of frequency 100 Hz . The separation between successive nodes on the string is close to -
(A) 20.0 cm
(B) 16.6 cm
(C) 10.0 cm
(D) 33.3 cm

Sol. A

Velocity of wave on string
$V=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{8}{5} \times 1000}=40 \mathrm{~m} / \mathrm{s}$
Now, wavelength of wave $\lambda=\frac{v}{n}=\frac{40}{100} \mathrm{~m}$
Separation b / w successive nodes, $\frac{\lambda}{2}=\frac{20}{100} \mathrm{~m}$
$=20 \mathrm{~cm}$
4. Water flows into a large tank with flat bottom at the rate of $10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Water is also leaking out of a hole of area $1 \mathrm{~cm}^{2}$ at its bottom. If the height of the water in the tank remains steady, then this height is -
(A) 2.9 cm
(B) 5.1 cm
(C) 4 cm
(D) 1.7 cm

Sol. B

Since height of water column is constant therefore, water inflow rate $\left(Q_{i n}\right)$
= water outflow rate
$\mathrm{Q}_{\mathrm{in}}=10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
$Q_{\text {out }}=A u=10^{-4} \times \sqrt{2 \mathrm{gh}}$
$10^{-4}=10^{-4} \sqrt{20 \times h}$
$\mathrm{h}=\frac{1}{20} \mathrm{~m}$
$\mathrm{h}=5 \mathrm{~cm}$
5. In the given circuit the cells have zero internal resistance. The currents (in Amperes) passing through resistance R_{1} and R_{2} respectively, are -

(A) $0.5,0$
(B) 2,2
(C) 0,1
(D) 1,2

Sol. A
$\mathrm{i}_{1}=\frac{10}{20}=0.5 \mathrm{~A}$
$\mathrm{i}_{2}=0$
6. Two electric dipoles, A, B with respective dipole moments $\vec{d}_{A}=-4 q a \hat{i}$ and $\vec{d}_{B}=-2 q a \hat{i}$ are placed on the x-axis with a separation R, as shown in the figrue.

The distance from A at which both of them produce the same potential is -
(A) $\frac{\mathrm{R}}{\sqrt{2}+1}$
(B) $\frac{R}{\sqrt{2}-1}$
(C) $\frac{\sqrt{2} R}{\sqrt{2}-1}$
(D) $\frac{\sqrt{2} R}{\sqrt{2}+1}$

Sol. C
$V=\frac{4 q a}{(R+x)^{2}}=\frac{2 q a}{\left(x^{2}\right)}$
$\sqrt{2} x=R+x$
$x=\frac{R}{\sqrt{2}-1}$

dist $=\frac{R}{\sqrt{2}-1}+R=\frac{\sqrt{2} R}{\sqrt{2}-1}$
7. An insulating thin rod of length ℓ has a x linear charge density $\rho(x)=\rho_{0} \frac{x}{\ell}$ on it. The rod is rotated about an axis passing through the origin ($x=0$) and perpendicular to the rod. If the rod makes n rotations per second, then the time averaged magnetic moment of the rod is -
(A) $\pi n \rho \ell^{3}$
(B) $\frac{\pi}{3} n \rho \ell^{3}$
(C) $\frac{\pi}{4} \mathrm{n} \rho \ell^{3}$
(D) $n \rho \ell^{3}$
sol. C
$\because M=N I A$
$d q=\lambda d x \& A=\pi x^{2}$
$\int d m=\int(x) \frac{\rho_{0} x}{\ell} d x \cdot \pi x^{2}$
$M=\frac{n \rho_{0} \pi}{\ell} \cdot \int_{0}^{\ell} x^{3} \cdot d x=\frac{n \rho_{0} \pi}{\ell} \cdot\left[\frac{L^{4}}{4}\right]$
$\mathrm{M}=\frac{\mathrm{n} \rho_{0} \pi \ell^{3}}{4}$ or $\frac{\pi}{4} \mathrm{n} \rho \ell^{3}$
8. A plano convex lens of refractive index μ_{1} and focal length f_{1} is kept in contact with another plano concave lens of refarctive index μ_{2} and focal length f_{2}. If the radius of curvature of their spherical faces is R each and $f_{1}=2 f_{2}$, then μ_{1} and μ_{2} are related as -
(A) $\mu_{1}+\mu_{2}=3$
(B) $3 \mu_{2}-2 \mu_{1}=1$
(C) $2 \mu_{2}-\mu_{1}=1$
(D) $2 \mu_{1}-\mu_{2}=1$

Sol. D

$\frac{1}{2 f_{2}}=\frac{1}{f_{1}}=\left(\mu_{1}-1\right)\left(\frac{1}{\infty}-\frac{1}{-R}\right)$
$\frac{1}{f_{2}}=\left(\mu_{2}-1\right)\left(\frac{1}{-R}-\frac{1}{\infty}\right)$
$\frac{\left(\mu_{1}-1\right)}{R}=\frac{\left(\mu_{2}-1\right)}{2 R}$
$2 \mu_{1}-\mu_{2}=1$
9. A TV transmission tower has a height of 140 m and the height of the receiving antenna is 40 m . What is the maximum distance upto which signals can be broadcasted from this tower in LOS (Line of Sight) mode ? (Given : radius of earth $=6.4 \times 10^{6} \mathrm{~m}$).
(A) 65 km
(B) 40 km
(C) 48 km
(D) 80 km

Sol. A

Maximum distance upto which signal can be broadcasted is
$d_{\text {max }}=\sqrt{2 g h_{T}}+\sqrt{2 g h_{R}}$
where h_{T} and h_{R} are heights of transmitter tower and height of receiver respectively.
Putting all values -
$\mathrm{d}_{\text {max }}=\sqrt{2 \times 6.4 \times 10^{6}}[\sqrt{140}+\sqrt{40}]$
on solving, $d_{\text {max }}=65 \mathrm{~km}$
10. In an electron microscope, the resolution that can be achieved is of the order of the wavelength of electrons used. To resolve a width of $7.5 \times 10^{-12} \mathrm{~m}$, the minimum electron energy required is clsoe to -
(A) 25 keV
(B) 500 keV
(C) 100 keV
(D) 1 keV

Sol. A

$$
\begin{array}{ll}
\lambda=\frac{\mathrm{h}}{\mathrm{p}} & {\left[\lambda=7.5 \times 10^{-12}\right]} \\
\mathrm{P}=\frac{\mathrm{h}}{\lambda} &
\end{array}
$$

$K E=\frac{P^{2}}{2 m}=\frac{(h / \lambda)^{2}}{2 m}=\frac{\left\{\frac{6.6 \times 10^{-34}}{7.5 \times 10^{-12}}\right\}}{2 \times 9.1 \times 10^{-31}} J$
$\mathrm{KE}=25 \mathrm{Kev}$
11. To get output ' 1 ' at R, for the given logic gate circuit the input values must be -

(A) $X=0, Y=1$
(B) $X=1, Y=0$
(C) $X=0, Y=0$
(D) $X=1, Y=1$

Sol. B
$P=\bar{x}+y$
$Q=\overline{\bar{y} \cdot x}=y+\bar{x}$
$\mathrm{O} / \mathrm{P}=\overline{\mathrm{P}+\mathrm{Q}}$
To make O / P
$P+Q$ must be ' O '
So, $y=0$
$x=1$
12. A parallel plate capacitor is of area $6 \mathrm{~cm}^{2}$ and a separation 3 mm . The gap is filled with three dielectric materials of equal thickness (see figure) with dielectric constants $\mathrm{K}_{1}=10, \mathrm{~K}_{2}=12$ and $\mathrm{K}_{3}=14$. The dielectric constant of material which when fully inserted in above capacitor, gives same capacitance would be:

(A) 4
(B) 36
(C) 14
(D) 12

Sol. D
Let dielectric constant of material used be K.
$\therefore \frac{10 \epsilon_{0} A / 3}{d}+\frac{12 \epsilon_{0} A / 3}{d}+\frac{14 \epsilon_{0} A / 3}{d}=\frac{K \epsilon_{0} A}{d}$
$\Rightarrow \mathrm{K}=12$
13. A uniform metallic wire has a resistance of 18Ω and is bent into an equilateral triangle. Then, the resistance between any two vertices of the triangle is :
(A) 4Ω
(B) 8Ω
(C) 12Ω
(D) 2Ω

Sol. A

$R_{\text {eq }}$ between any two vertex will be
$\frac{1}{R_{\text {eq }}}=\frac{1}{12}+\frac{1}{6} \Rightarrow R_{\text {eq }}=4 \Omega$
14. A homogeneous solid cylindrical roller of radius R and mass M is pulled on a cricket pitch by a horizontal force. Assuming rolling without slipping, angular acceleration of the cylinder is :
(A) $\frac{F}{2 m R}$
(B) $\frac{F}{3 m R}$
(C) $\frac{2 \mathrm{~F}}{3 m \mathrm{R}}$
(D) $\frac{3 F}{2 m R}$

Sol.

$F R=\frac{3}{2} M R^{2} \alpha$
$\alpha=\frac{2 F}{3 M R}$
15. A potentiometer wire $A B$ having length L and resistance $12 r$. is joined to a cell D of emf. ε and internal resistance r. A cell C having emf $\varepsilon / 2$ and internal resistance $3 r$ is connected. The length AJ at which the galvanometer as shown in fig. shows no deflection is.

(A) $\frac{13}{24} L$
(B) $\frac{5}{12} \mathrm{~L}$
(C) $\frac{11}{12} \mathrm{~L}$
(D) $\frac{11}{24} \mathrm{~L}$

Sol. A

$i=\frac{\varepsilon}{13 r}$
$\mathrm{i}\left(\frac{\mathrm{X}}{\mathrm{L}} 12 r\right)=\frac{\varepsilon}{2}$
$\frac{\varepsilon}{13 r}\left[\frac{x}{L} \cdot 12 r\right]=\frac{\varepsilon}{2} \Rightarrow x=\frac{13 L}{24}$
16. A solid metal cube of edge length 2 cm is moving in a positive y-direction at a constant speed of $6 \mathrm{~m} / \mathrm{s}$. There is a uniform magnetic field of 0.1 T in the positive z -direction. The potential difference between the two faces of the cube perpendicular to the x-axis, is :
(A) 6 mV
(B) 12 mV
(C) 1 mV
(D) 2 mV

Sol. B
Potential difference between two forces perpendicular to x-axis will be
ใ. $(\vec{V} \times \vec{B})=12 \mathrm{mV}$
17 A block of mass m is kept on a platform which starts from rest with constant acceleration $\mathrm{g} / 2$ upward, as shown in fig. Work done by normal reaction on block in time t is :

(A) $\frac{\mathrm{m} \mathrm{g}^{2} \mathrm{t}^{2}}{8}$
(B) $\frac{3 \mathrm{mg}^{2} \mathrm{t}^{2}}{8}$
(C) $-\frac{\mathrm{mg}^{2} \mathrm{t}^{2}}{8}$
(D) 0

Sol. B

$N-m g=\frac{m g}{2} \Rightarrow N=\frac{3 m g}{2}$
Now, work done $W=\vec{N} \vec{S}=\left(\frac{3 \mathrm{mg}}{2}\right)\left(\frac{1}{2} \mathrm{gt}^{2}\right)$
$\Rightarrow W=\frac{3 \mathrm{mg}^{2} \mathrm{t}^{2}}{4}$
18 A satellite is moving with a constant speed v in circular orbit around the earth. An object of mass ' m ' is ejected from the satellite such that it just escapes from the gravitational pull of the earth. At the time of ejection, the kinetic energy of the object is :
(A) $2 m v^{2}$
(B) $\frac{3}{2} m v^{2}$
(C) $m v^{2}$
(D) $\frac{1}{2} m v^{2}$

Sol. C

At height r from centre of earth. orbital velocity $=\sqrt{\frac{G M}{r}}$
\therefore By energy conservation
$K E$ of 'm' $+\left(-\frac{G M m}{r}\right)=0+0$
(At infinity, $\mathrm{PE}=\mathrm{KE}=0$)
\Rightarrow KE of ' m ' $=\frac{G M m}{r}=\left(\sqrt{\frac{G M}{r}}\right)^{2} m=m v^{2}$

19 A charge Q is distributed over three concentric spherical shells of radii a, b, c ($a<b<c$) such that their surface charge densities are equal to one another. The total potential at a point at distance r from their common centre, where $r<a$, would be :
(A) $\frac{\mathrm{Q}}{4 \pi \varepsilon_{0}(\mathrm{a}+\mathrm{b}+\mathrm{c})}$
(B) $\frac{\mathrm{Q}(\mathrm{a}+\mathrm{b}+\mathrm{c})}{4 \pi \varepsilon_{0}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)}$
(C) $\frac{Q}{12 \pi \varepsilon_{0}} \frac{a b+b c+c a}{a b c}$
(D) $\frac{\mathrm{Q}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)}{4 \pi \varepsilon_{0}\left(\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}\right)}$

Sol. B

Potential at point $P, V=\frac{k Q_{a}}{a}+\frac{k Q_{b}}{a}+\frac{k Q_{c}}{a}$
$\because Q_{a}: Q_{b}: Q_{c}:: a^{2}: b^{2}: c^{2}$
[since $\sigma_{a}=\sigma_{b}=\sigma_{c}$]
$\therefore Q_{a}=\left[\frac{\mathrm{a}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}\right] \mathrm{Q}$
$Q_{b}=\left[\frac{b^{2}}{a^{2}+b^{2}+c^{2}}\right] Q$
$Q_{c}=\left[\frac{c^{2}}{a^{2}+b^{2}+c^{2}}\right] Q$
$V=\frac{Q}{4 \pi \epsilon_{0}}\left[\frac{(a+b+c)}{a^{2}+b^{2}+c^{2}}\right]$
20 A piece of wood of mass 0.03 kg is dropped from the top of a 100 m height building. At the same time, a bullet of a mass 0.02 kg is fired vertically upward, with a velocity $100 \mathrm{~ms}^{-1}$, from the ground. The bullet gets embadded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is: $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
(A) 30 m
(B) 10 m
(C) 40 m
(D) 20 m

Sol. C

Time taken for the particle to collide,
$\mathrm{t}=\frac{\mathrm{d}}{\mathrm{V}_{\text {rel }}}=\frac{100}{100}=1 \mathrm{sec}$
Speed of wood just before collision $=\mathrm{gt}=10 \mathrm{~m} / \mathrm{s}$
\& speed of bullet just before collision $v=u-g t$
$=100-10=90 \mathrm{~m} / \mathrm{s}$
Now, conservation of linear momentum just before and after the collision -
$-(0.02)(1)+(0.02)(90)=(0.05) v$
$\Rightarrow 150=5 \mathrm{v}$
$\Rightarrow v=30 \mathrm{~m} / \mathrm{s}$
Max. height reached by body $h=\frac{v^{2}}{2 g}$

$h=\frac{30 \times 30}{2 \times 10}=45 \mathrm{~m}$
\therefore Height above tower $=40 \mathrm{~m}$
21. The density of a material in SI units is $128 \mathrm{~kg} \mathrm{~m}^{-3}$. In certain units in which the unit of length is 25 cm and the unit of mass is 50 g , the numerical value of density of the material is :
(A) 40
(B) 410
(C) 16
(D) 640

Sol. A

$\frac{128 \mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{125(50 \mathrm{~g})(20)}{(25 \mathrm{~cm})^{3}(4)^{3}}$
$=\frac{128}{64}(20)$ units
$=40$ units
22. A magnet of total magnetic moment $10^{-2} \hat{i} \quad A-m^{2}$ is placed in a time varying magnetic field, $B \hat{i}(\cos \omega t)$ where $B=1$ Tesla and $\omega=0.125 \mathrm{rad} / \mathrm{s}$. The work done for reversing the direction of the magnetic moment at $t=1$ second is :
(A) 0.01 J
(B) 0.028 J
(C) 0.007 J
(D) 0.014 J

Sol. D

Work done, $W=(\Delta \vec{\mu}) \cdot \vec{B}$
$=2 \times 10^{-2} \times 1 \cos (0.125)$
$=0.02 \mathrm{~J} \simeq 0.014 \mathrm{~J}$ (due to most close option available.)
23. In a Young's double slit experiment with slit separation 0.1 mm , one observes a bright fringe at angle $\frac{1}{40}$ rad by using light of wavelength λ_{1}. When the light of wavelength λ_{2} is used a bright fringe is seen at the same angle in the same set up. Given that λ_{1} and λ_{2} are in visible range (380 nm to 740 nm), their values are :
(A) $625 \mathrm{~nm}, 500 \mathrm{~nm}$
(B) $380 \mathrm{~nm}, 500 \mathrm{~nm}$
(C) $400 \mathrm{~nm}, 500 \mathrm{~nm}$
(D) $380 \mathrm{~nm}, 525 \mathrm{~nm}$

Sol. A
Path difference $=d \sin \theta \approx d \theta$
$=0.1 \times \frac{1}{40}=2500 \mathrm{~nm}$
or bright fringe, path difference must be integral multiple of λ.
$\therefore 2500=\mathrm{n} \lambda_{1}=m \lambda_{2}$
$\therefore \lambda_{1}=625, \lambda_{2}=500($ from $m=5)$
(for $n=4$)
24. To mop-clean a floor, a cleaning machine presses a circular mop of radius R vertically down with a total force F and rotates it with a constant angular speed about its axis. If the force F is distributed uniformly over the mop and if coefficient of friction between the mop and the floor is μ, the torque, applied by the machine on the mop is :
(A) $\mu \mathrm{FR} / 3$
(B) $\mu \mathrm{FR} / 6$
(C) $\mu \mathrm{FR} / 2$
(D) $\frac{2}{3} \mu \mathrm{FR}$

Sol. D
Consider a strip of radius $x \&$ thickness $d x$, Torque due to friction on this strip.
$\int \mathrm{d} \tau=\int_{0}^{\mathrm{R}} \frac{\mathrm{x} \mu \mathrm{F} .2 \pi \mathrm{xdx}}{\pi \mathrm{R}^{2}}$
$\tau=\frac{2 \mu \mathrm{~F}}{\mathrm{R}^{2}} \cdot \frac{\mathrm{R}^{3}}{3}$
$\tau=\frac{2 \mu \mathrm{FR}}{3}$

25. A heat source at $\mathrm{T}=10^{3} \mathrm{~K}$ is connected to another heat reservoir at $\mathrm{T}=10^{2} \mathrm{~K}$ by a copper slab which is 1 m thick, Given that the thermal conductivity of copper is $0.1 \mathrm{WK}^{-1} \mathrm{~m}^{-1}$, the energy flux through it in the steady state is :
(A) $65 \mathrm{Wm}^{-2}$
(B) $200 \mathrm{Wm}^{-2}$
(C) $90 \mathrm{Wm}^{-2}$
(D) $120 \mathrm{Wm}^{-2}$

Sol. C

$$
\begin{aligned}
& \left(\frac{d Q}{d t}\right)=\frac{k A \Delta T}{\ell} \\
& \Rightarrow \frac{1}{A}\left(\frac{d Q}{d t}\right)=\frac{(0.1)(900)}{1}=90 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

26. If the magnetic field of a plane electromagnetic wave is given by (The speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) $B=100 \times 10^{-6} \sin \left[2 \pi \times 2 \times 10^{15}\left(t-\frac{x}{C}\right)\right]$ Then the maximum electric field associated with it is :
(A) $6 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(B) $4.5 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(C) $4 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(D) $3 \times 10^{4} \mathrm{~N} / \mathrm{C}$

Sol.
$E_{0}=B_{0} \times C$
$=100 \times 10^{-6} \times 3 \times 10^{8}$
$=3 \times 10^{4} \mathrm{~N} / \mathrm{C}$
27. Two guns A and B can fire bullets at speeds $1 \mathrm{~km} / \mathrm{s}$ and $2 \mathrm{~km} / \mathrm{s}$ respectively. From a point on a horizontal ground, they are fired in all possible directions. The ratio of maximum areas covered by the bullets fired by the two guns, on the ground is:
(A) $1: 8$
(B) $1: 16$
(C) $1: 4$
(D) $1: 2$

Sol. D
$R=\frac{u^{2} \sin 2 \theta}{g}$
$A=\pi R^{2}$
$A \propto R^{2}$
$A \propto u^{4}$
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{u}_{1}^{4}}{\mathrm{u}_{2}^{4}}=\left[\frac{1}{2}\right]^{4}=\frac{1}{16}$
28. Three Carnot engines operate in series between a heat source at a temperature T_{1} and a heat sink at temperature T_{4} (see figure) There are two other reservoirs at temperature T_{2} and T_{3}, as shown, with $T_{1}>T_{2}>T_{3}>T_{4}$. The three engines are equally efficient if :

(A) $\mathrm{T}_{2}=\left(\mathrm{T}_{1} \mathrm{~T}_{4}\right)^{1 / 2} ; \mathrm{T}_{3}=\left(\mathrm{T}_{1}^{2} \mathrm{~T}_{4}\right)^{1 / 3}$
(B) $\mathrm{T}_{2}=\left(\mathrm{T}_{1}^{2} \mathrm{~T}_{4}\right)^{1 / 3} ; \mathrm{T}_{3}=\left(\mathrm{T}_{1} \mathrm{~T}_{4}^{2}\right)^{1 / 3}$
(C) $T_{2}=\left(T_{1}^{3} T_{4}\right)^{1 / 4} ; T_{3}=\left(T_{1} T_{4}^{3}\right)^{1 / 4}$
(D) $T_{2}=\left(T_{1} T_{4}^{2}\right)^{1 / 3} ; T_{3}=\left(T_{1}^{2} T_{4}\right)^{1 / 3}$

Sol. B
$=1-\frac{T_{2}}{T_{1}}=1-\frac{T_{3}}{T_{2}}=1-\frac{T_{4}}{T_{3}}$
$\Rightarrow \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{4}}=\frac{T_{4}}{T_{3}}$
$\Rightarrow T_{2}=\sqrt{T_{1} T_{3}}=\sqrt{T_{1} \sqrt{T_{2} T_{4}}}$
$T_{3}=\sqrt{T_{2} T_{4}}$
$T_{2}^{3 / 4}=\sqrt{T_{1}^{1 / 2} T_{4}^{1 / 4}}$
$T_{2}=T_{1}^{2 / 3} T_{4}^{1 / 3}$
29. A train moves towards a stationary observer with speed $34 \mathrm{~m} / \mathrm{s}$. The train sounds a whistle and its frequency registered by the observer is f_{1}. If the speed of the train is reduced to $17 \mathrm{~m} / \mathrm{s}$, the frequency registered is f_{2}. If speed of sound is $340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is :
(A) $21 / 20$
(B) $19 / 18$
(C) $18 / 17$
(D) $20 / 19$

Sol. B

$f_{\text {app }}=f_{0}\left[\frac{v_{2} \pm v_{0}}{v_{2} \mp v_{s}}\right]$
$f_{1}=f_{0}\left[\frac{340}{340-34}\right]$
$f_{2}=f_{0}\left[\frac{340}{340-17}\right]$
$\frac{f_{1}}{f_{2}}=\frac{340-17}{340-34}=\frac{323}{306} \Rightarrow \frac{f_{1}}{f_{2}}=\frac{19}{18}$
30. A 2 W carbon resistor is color coded with green black, red and brown respectively. The maximum current which can be passed through this resistor is :
(A) 20 mA
(B) 0.4 mA
(C) 63 mA
(D) 100 mA

Sol. A

$P=i^{2} R$
\therefore for $\mathrm{i}_{\max }$, R must be minimum
from color coding $R=50 \times 10^{2} \Omega$
$\therefore \mathrm{i}_{\text {max }}=20 \mathrm{~mA}$

