CHEMISTRY JEE-MAIN (April-Attempt) 10 April (Shift-2) Paper

SECTION - A

8. The crystal field stabilization energy (CFSE) of $[Fe(H_2O)_6]Cl_2$ and $K_2[NiCl_4]$, respectively, are : (1) $-0.4\Delta_0$ and $-0.8\Delta_t$ (2) $-0.6\Delta_0$ and $-0.8\Delta_t$

(3)
$$-2.4\Delta_0^{\circ}$$
 and $-1.2\Delta_t^{\circ}$

(2)
$$-0.6\Delta_0$$
 and $-0.8\Delta_t$
(4) $-0.4\Delta_0$ and $-1.2\Delta_t$

(4) 166

Sol.

 $(Fe(H_2O)_6)CI_2 = t_2g^4eg^2$

$$CFSE = \frac{(-0.4 \times 4 + .6 \times 2)\Delta_0}{(-1.6 + 1.2)\Delta_0}$$

= -0.4 \Delta_0
K_2[NiCl_4] = eg^4 t_2 g^4
CFSE = (-0.6 \times 4 + 0.4 \times 4)\Deltat
= (-2.4 + 1.6)\Delta_t = -0.8 \Deltat

For the reaction of H₂ with I₂, the rate constant is 2.5×10^{-4} dm³ mol⁻¹ s⁻¹ at 327°C and 1.0 dm³ mol⁻¹ s⁻¹ at 527°C. The activation energy for the reaction, in kJ mol⁻¹ is : (R = 8.314 J K⁻¹ mol⁻¹)

(3) 72

Sol.

(1) 150

4

9.

$$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

$$\log \frac{1}{2.5 \times 10^4} = \frac{E_a}{2.303 \times 8.314} \left(\frac{800 - 600}{800 \times 600} \right)$$

$$-\log 5^2 \times 10^{-5} = \frac{E_a}{2.303 \times 8.314} \left(\frac{200}{800 \times 600} \right)$$

$$\Rightarrow E_a = [5 - 1.3979] \times 2.303 \times 8.314 \times 800 \times 3$$

$$= 165.5$$

(2) 59

<u>~</u> 166 J/k-mol

10.Number of stereo centres present in linear and cyclic structures of glucose are respectively :(1) 4 & 4(2) 5 & 5(3) 5 & 4(4) 4 & 5

- **11.** The number of pentagons in C_{60} and trigons (triangles) in white phosphorus, respectively, are :(1) 20 and 3(2) 20 and 4(3) 12 and 3(4) 12 and 4
- Sol. 4

```
Fact
```

- **12.** The correct option among the following is :
 - (1) Addition of alum to water makes it unfit for drinking.
 - (2) Brownian motion in colloidal solution is faster if the viscosity of the solution is very high.
 - (3) Colloidal medicines are more effective because they have small surface area.
 - (4) Colloidal particles in lyophoboic sols can be precipitated by electrophoresis.

Sol. 4

factual

13. 1 g of a non-volatile non-electrolyte solute is dissolved in 100 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1 : 5. the ratio of the elevation in their boiling

points.
$$\frac{\Delta T_b(A)}{\Delta T_b(B)}$$
, is :
(1) 1 : 0.2 (2) 1 : 5 (3) 10 : 1 (4) 5 : 1
Sol. 2
 $\frac{\Delta T_b = ik_bm}{\Delta T_b = ik_bm} = \frac{1}{5}$
14. The correct order of the first ionization enthalpies is :
(1) Mn < Ti < Zn < Ni (2) Ti < Mn < Ni < Zn (3) Ti < Mn < Ti < Zn < Ni (4) Zn < Ni < Mn < Ti < Zn (3) Ti < Mn < Zn < Ni (4) Zn < Ni < Mn < Ti < Data based
15. The pH of a 0.02 M NH₄Cl solution will be [given K_b(NH₄OH) = 10⁻⁵ and log 2 = 0.301] (1) 4.65 (2) 2.65 (3) 4.35 (4) 5.35
Sol. 4
pH = $\frac{1}{2}$ [pKw-pk_b - log c]
 $= \frac{1}{2}$ [14 - 5 - log 0.02] $= \frac{1}{2}$ [14 - 5 - 0.3010 + 2] = 5.349 = 5.35
16. In chromatography, which of the following statements is INCORRECT for R_r? (1) Higher R_r value means higher adsorption.
(2) R_r value is dependent on the mobile phase.
(3) R_r value depends on the type of chromatography.

- (4) The value of R_f can not be more than one.
- Sol. 1

Factual

17. Which of the following is NOT a correct method of the preparation of benzylamine from cyanobenzene?

(1) (i) HCl/H ₂ O	(ii) $NaBH_4$
(2) (i) LiAlH₄	(ii) H ₃ O+
(3) (i) $SnCl_2 + HCl(gas)$	(ii) NaBH₄
(4) H ₂ /Ni	
1	

```
Sol.
```

 $\begin{array}{ccc} Ph-CN & \longrightarrow & PhCH_2NH_2 \\ & & \downarrow Hv/H_2O \\ & & PhCOOH & \underline{\qquad NaBH_4} \rightarrow X \end{array}$

18. The increasing order of nucleophilicity of the following nucleophiles is :

Sol.

(a) CH ₃ CO ₂ [@]	(b) H ₂ O	(c) CH₃SO	_з ө (d) он
(1) (a) < (d) < (c) < (b)	(2) (b) <	(c) < (d) < (a)
(3) (d) < (a) < (c) < (b)	(4) (b) <	(c) < (a) < (d)
4			
Nucleophteuty or	rder		
a > a > c > b			

19. Which one of the following graphs between molar conductivity (Λ_m) versus \sqrt{C} is correct ?

22. The correct match between Item–I and Item-II is :

	Item - I		Item - II
(a)	High density polythene	(i)	Peroxide catalyst
(b)	Polyacrylonitrile	(ii)	Condensation at high temperature & pressure
(c)	Novolac	(iii)	Ziegler-Natta Catalyst
(d)	Nylon 6	(iv)	Acid or base catalyst

(1) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii) (3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii) **3** (2) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii) (4) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

Sol.

23. Compound $A(C_9H_{10}O)$ shows positive iodoform test. Oxidation of A with KMnO₄/KOH gives acid $B(C_8H_6O_4)$. Anhydride of B is used for the preparation of phenolphthalein. Compound A is:

 $(3) = \frac{0.85}{3.4} \tag{4} \frac{0.54}{0.85}$

26. Points I, II and III in the following plot respectively correspond to (V_{mp} : most probable velocity)

- A hydrated solid X on heating initially gives a monohydrated compound Y. Y upon heating above 373K leads to an anhydrous white powder Z. X and Z, respectively, are:
 (1) Baking and and and ash
 - (1) Baking soda and soda ash
 - (2) Baking soda and dead burnt plaster
 - (3) Washing soda and dead burnt plaster
 - (4) Washing soda and soda ash

Sol. 4

 $Na_2CO_3.10H_2O \longrightarrow Na_2CO_3.H_2O \longrightarrow Na_2CO_3$ washing soda.

29.

$$2SO_2(g) + O_2(g) \implies 2SO_3(g),$$

 $\Delta H = -57.2 \text{ kJ mol}^{-1} \text{ and}$

$$K_c = 1.7 \times 10^{16}$$
.

Which of the following statement is INCORRECT ?

- (1) The equilibrium constant decreases as the temperature increases
- (2) The equilibrium will shift in forward direction as the pressure increases
- (3) The addition of inert gas at constant volume will not affect the equilibrium constant
- (4) The equilibrium constant is large suggestive of reaction going to completion and so no catalyst is required

(

1)
$$\ln \frac{k_f}{k_i} = \frac{\Delta H}{R} \left[\frac{T_f - T_i}{T_i T_f} \right]$$

-ve +ve

$$\ln \frac{k_f}{k_i} = -ve$$

 $\therefore k_i > k_f$

- (2) on increasing pressure equilibrium will shift in forward direction
- (3) No effect of addition of inert gas at constant volume
- (4) No relation of catalyst with equilibrium constant.

30. The major product 'Y' in the following reaction is: