MATHEMATICS

JEE-MAIN EXAMINATION – JUNE, 2022

28 June S - 01 Paper Solution

SECTION-A

1. If

$$\sum_{k=1}^{31} \left({}^{31}C_k \right) \! \left({}^{31}C_{k-1} \right) - \sum_{k=1}^{30} \left({}^{30}C_k \right) \! \left({}^{30}C_{k-1} \right) = \frac{\alpha \, (60!)}{(30!)(31!)} \, ,$$

Where $\alpha \in \mathbb{R}$, then the value of 16α is equal to

(A) 1411

(B) 1320

(C) 1615

(D) 1855

Ans. (A)

Sol.
$$\sum_{R=1}^{31} {}^{31}C_R \cdot {}^{31}C_{R-1}$$

$$= {}^{31}C_1 \cdot {}^{31}C_0 + {}^{31}C_2 \cdot {}^{31}C_1 + \dots + {}^{31}C_{31} \cdot {}^{31}C_{30}$$

$$= {}^{31}C_0 \cdot {}^{31}C_{30} + {}^{31}C_1 \cdot {}^{31}C_{29} + \dots + {}^{31}C_{30} \cdot {}^{31}C_0$$

$$= {}^{62}C_{30} \cdot \bullet$$

Similarly

$$\sum_{R=1}^{30} \left({}^{30}C_R \cdot {}^{30}C_{R-1} \right) = {}^{60}C_{29}$$

$$\sum_{R=1}^{30} {30 \choose R} \cdot {30 \choose R} = {60 \choose 29} = {62! \over 30!32!} - {60! \over 29!31!}$$

$$=\frac{60!}{29!31!} \left\{ \frac{62 \cdot 61}{30 \cdot 32} - 1 \right\}$$

$$60! \quad (2822)$$

$$=\frac{60!}{30!31!} \left(\frac{2822}{32}\right)$$

$$\therefore 16\alpha = 16 \times \frac{2822}{32} = 1411$$

Let a function $f: \mathbb{N} \to \mathbb{N}$ be defined by 2.

$$f(n) = \begin{bmatrix} 2n, & n = 2,4,6,8,.... \\ n-1, & n = 3,7,11,15,..... \\ \frac{n+1}{2}, & n = 1,5,9,13,..... \end{bmatrix}$$

then, f is

- (A) one-one but not onto
- (B) onto but not one-one
- (C) neither one-one nor onto
- (D) one-one and onto

Ans. (D)

Sol. $f(x) = \begin{cases} 4R & ; & n = 2R \\ 4R - 2 & ; & n = 4R - 1 \\ 2R - 1 & ; & n = 4R - 3 \end{cases}$

 $(R \in N)$

Note that for any element, it will fall into exactly. one of these sets.

 $\{y: y = 4R; y \in N\}$

 $\{y: y = 4R - 2; y \in N\}$

 $\{y: y = 2R - 1; y \in N\}$

Corresponding to that y, we will get exactly one value of n.

Thus, f is one – one & onto.

3. If the system of linear equations

$$2x + 3y - z = -2$$

$$x + y + z = 4$$

$$x - y + |\lambda| z = 4\lambda - 4$$

where $\lambda \in \mathbb{R}$, has no solution, then

- (A) $\lambda = 7$
- (B) $\lambda = -7$
- (C) $\lambda = 8$
- (D) $\lambda^{2} = 1$

Ans. (B)

Sol. $\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & |\lambda| \end{vmatrix} = 0$ $\Rightarrow |\lambda| = 7 \Rightarrow \lambda = \pm 7$...(1)

System:

$$2x + 3y - z = -2$$
 ...(2)

$$x + y + z = 4 \qquad \dots (3)$$

$$x - y + |\lambda| z = 4\lambda - 4 \qquad \dots (4)$$

Eliminating y from equal (2) & (3) we get

$$x + 4z = 14$$
 ...(5)

$$(3)+(4) \Rightarrow x + \left(\frac{|\lambda|+1}{2}\right)z = 2\lambda \qquad \dots (6)$$

Clearly for $\lambda = -7$, system is inconsistent.

- 4. Let A be a matrix of order 3×3 and det (A) = 2. Then det (det (A) adj (5 adj (A^3))) is equal to _____.
 - (A) 512×10^6
- (B) 256×10^6
- (C) 1024×10^6
- (D) 256×10^{11}

Ans. (A)

- **Sol.** |(det (A)) adj (5 adj (A))|
 - $= |2adj (5adj(A^3))|$
 - $= 2^3 |adj (5 adj (A^3)|)$
 - $= 2^3$. $|5adj(A^3)|^2$
 - $= 2^3 (5^3 \cdot |adj(A^3)|)^2$
 - $= 2^3 \cdot 5^6 \cdot |adjA^3|^2$
 - $=2^3.5^6((|A|^3)^2)^2$
 - $= 2^3.5^6.2^{12} = 2^{15} \times 5^6$
 - $=2^9 \times 10^6$
 - $= 512 \times 10^6$.
- 5. The total number of 5-digit numbers, formed by using the digits 1, 2, 3, 5, 6, 7 without repetition, which are multiple of 6, is
 - (A)36
- (B) 48
- (C) 60
- (D) 72

Ans. (D)

Sol. To make a no. divisible by 3 we can use the digits 1,2,5,6,7 or 1,2,3,5,7.

Using 1,2,5,6,7, number of even numbers is

$$= 4 \times 3 \times 2 \times 1 \times 2 = 48$$

Using 1,2,3,5,7, number of even numbers is

$$= 4 \times 3 \times 2 \times 1 \times 1 = 24$$

Required answer is 72.

- 6. Let A_1 , A_2 , A_3 , be an increasing geometric progression of positive real numbers. If $A_1A_3A_5A_7 = \frac{1}{1296} \text{ and } A_2 + A_4 = \frac{7}{36}, \text{ then, the}$ value of $A_6 + A_8 + A_{10}$ is equal to
 - (A) 33
- (B)37
- (C) 43
- (D) 47

Ans. (C)

Sol.
$$A_1 \cdot A_3 \cdot A_5 \cdot A_7 = \frac{1}{1296}$$

$$\left(A_4\right)^4 = \frac{1}{1296}$$

$$A_4 = \frac{1}{6}$$

...(1)

$$A_2 + A_4 = \frac{7}{36}$$

$$A_2 = \frac{1}{36}$$

...(2)

$$A_6 = 1$$

$$A_8 = 6$$

$$A_{10} = 36$$

$$A_6 + A_8 + A_{10} = 43$$

7. Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral

$$\int_{0}^{1} [-8x^{2} + 6x - 1] dx$$
 is equal to

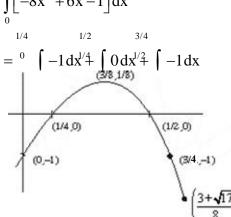
$$(A)-1$$

(B)
$$-\frac{5}{4}$$

(C)
$$\frac{\sqrt{17}-13}{9}$$

Ans. (C)

Sol. $\int \left[-8x + 6x - 1 \right] dx$



$$+\int_{3/4}^{\frac{3+\sqrt{17}}{8}} -2\,dx + \int_{\frac{3+\sqrt{17}}{9}}^{1} -3\,dx$$

$$= -\left[x\right]_{0}^{1/4} + 0 - \left[x\right]_{1/2}^{3/4} + -2\left[x\right]_{3/4}^{\frac{3+\sqrt{17}}{8}} - 3\left[x\right]_{\frac{3+\sqrt{17}}{8}}^{1}$$

$$= -\left(\frac{1}{4} - 0\right) - \left(\frac{3}{4} - \frac{1}{2}\right) - 2\left(\frac{3 + \sqrt{17}}{8} - \frac{3}{4}\right) - 3\left(1 - \frac{3 + \sqrt{17}}{8}\right)$$

$$= -\frac{1}{4} - \frac{1}{4} + \frac{-6 - 2\sqrt{17}}{8} + \frac{3}{2} - 3 + \frac{9 + 3\sqrt{17}}{8}$$

$$= \frac{\sqrt{17} - 13}{8}$$

8. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{bmatrix} [e^x], & x < 0 \\ ae^x + [x - 1], & 0 \le x < 1 \\ b + [\sin(\pi x)], & 1 \le x < 2 \\ [e^{-x}] - c, & x \ge 2 \end{bmatrix}$$

where $a,b,c \in \mathbb{R}$ and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?

- (A) There exists $a,b,c \in \mathbb{R}$ such that f is continuous of \mathbb{R} .
- (B) If f is discontinuous at exactly one point, then a + b + c = 1.
- (C) If f is discontinuous at exactly one point, then $a+b+c \neq 1$.
- (D) f is discontinuous at atleast two points, for any values of a, b and c.

Ans. (C)

- **Sol.** f(x) is discontinuous at x = 1For continuous at x = 0; a = 1For continuous at x = 2; b + c = 1a + b + c = 2
- 9. The area of the region

$$S = \{(x,y): y^2 \le 8x, y \ge \sqrt{2}x, x \ge 1\}$$
 is

$$(A) \frac{13\sqrt{2}}{6}$$

(B)
$$\frac{11\sqrt{2}}{6}$$

$$(C) \frac{5\sqrt{2}}{6}$$

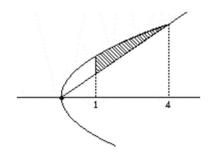
(D)
$$\frac{19\sqrt{2}}{6}$$

Ans. (B)

Sol.
$$y^2 = 8x$$

$$y = \sqrt{2}x$$

$$y^2 = 2x^2$$



$$\Rightarrow 8x = 2x^2$$
$$\Rightarrow x = 0 & 4$$

Area : =
$$\int_{1}^{4} 2\sqrt{2}\sqrt{x} - \sqrt{2}x \, dx$$

$$=2\sqrt{2}\left(\frac{x^{\frac{3}{2}}}{3/2}\right)_{1}^{4}-\sqrt{2}\left(\frac{x^{2}}{2}\right)_{1}^{4}$$

$$=\frac{4\sqrt{2}}{3}(8-1)-\frac{\sqrt{2}}{3}(16-1)$$

$$=\frac{28\sqrt{2}}{3} - \frac{15\sqrt{2}}{2} = \frac{11\sqrt{2}}{6}$$

Let the solution curve y = y(x) of the differential equation,

$$\left[\frac{x}{\sqrt{x^2-y^2}} + e^{\frac{y}{x}}\right] x \frac{dy}{dx} = x + \left[\frac{x}{\sqrt{x^2-y^2}} + e^{\frac{y}{x}}\right] y$$

pass through the points (1, 0) and $(2\alpha, \alpha), \alpha > 0$.

Then α is equal to

(A)
$$\frac{1}{2} \exp\left(\frac{\pi}{6} + \sqrt{e} - 1\right)$$
 (B) $\frac{1}{2} \exp\left(\frac{\pi}{3} + \sqrt{e} - 1\right)$

(C)
$$\exp\left(\frac{\pi}{6} + \sqrt{e} + 1\right)$$

(C)
$$\exp\left(\frac{\pi}{6} + \sqrt{e} + 1\right)$$
 (D) $2\exp\left(\frac{\pi}{3} + \sqrt{e} - 1\right)$

Ans. (A)

Sol.
$$\left(\frac{x}{\sqrt{x^2 - y^2}} + e^{\frac{y}{x}}\right) x \frac{dy}{dx} = x + \left(\frac{x}{\sqrt{x^2 y^2}} + e^{\frac{y}{x}}\right) y$$

$$\Rightarrow e^{\frac{y}{x}} (x dy - y dx) + \frac{x}{\sqrt{x^2 - y^2}} (x dy - y dx) = x dx$$

Dividing both side by x^2

$$\Rightarrow e^{\frac{y}{x}} \left(\frac{x dy - y dx}{x^2} \right) + \frac{1}{\sqrt{1 - \left(\frac{y}{x}\right)^2}} \left(\frac{x dy - y dx}{x^2} \right) = \frac{dx}{x}$$

$$\Rightarrow e^{\frac{y}{x}} \mid d\left(\frac{t}{x}\right) + \frac{1}{\sqrt{1 - \left(\frac{y}{x}\right)^2}} d\left(\frac{y}{x}\right) = \frac{dy}{x}$$

Integrate both side.

$$\int e^{\frac{y}{x}} d\left(\frac{y}{x}\right) + \int \frac{1}{\sqrt{1 - \left(\frac{y}{x}\right)^2}} d\left(\frac{y}{x}\right) = \int \frac{dx}{x}$$

$$\Rightarrow e^{\frac{y}{x}} + \sin^{-1}\left(\frac{y}{x}\right) = \ln x + c$$

It passes through (1, 0)

$$1 + 0 = 0 + c \implies c = 1$$

It passes through $(2\alpha, \alpha)$

$$e^{\frac{1}{2}} + \sin^{-1}\frac{1}{2} = \ln 2\alpha + 1$$

$$\Rightarrow \ln 2\alpha = \sqrt{e} + \frac{\pi}{6} - 1$$

$$\Rightarrow 2\alpha = e^{\left(\sqrt{e} + \frac{\pi}{6} - 1\right)}$$

$$\Rightarrow \alpha = \frac{1}{2} e^{\left(\frac{\pi}{6} + \sqrt{e} - 1\right)}$$

Let y = y(x) be the solution of the differential 11.

equation
$$x(1-x^2)\frac{dy}{dx} + (3x^2y - y - 4x^3) = 0, x > 1,$$

with y(2) = -2. Then y(3) is equal to

$$(A) - 18$$

$$(B) - 12$$

$$(C) -6$$

$$(D)-3$$

Ans. (A)

Sol. $x(1-x^2)\frac{dy}{dx} + (3x^2y - y - 4x^3) = 0$

$$x(1-x^2)\frac{dy}{dx} + (3x^2-1)y = 4x^3$$

$$\frac{dy}{dx} + \frac{(3x^2 - 1)}{(x - x^3)}y = \frac{4x^3}{(x - x^3)}$$

$$\frac{dy}{dx} + Py = Q$$

IF =
$$e^{\int P dx} = e^{\int \frac{3x^2 - 1}{x - x^3} dx}$$

$$x - x^3 = t \implies IF = e^{\int \frac{-dt}{t}}$$

$$=e^{-\ell nt}=\frac{1}{t}$$

$$\therefore$$
 IF = $\frac{1}{x-x^3}$

$$y \times IF = \int Q \times IF dx$$

$$y\left(\frac{1}{x-x^{3}}\right) = \int \frac{4x^{3}}{x-x^{3}} \times \frac{1}{(x-x^{3})} dx$$

$$=\int \frac{4x^3}{\left(x-x^3\right)^2} dx$$

$$= \int \frac{4x}{(1-x^2)^2} dx \qquad 1-x^2 = K$$

$$1 - x^2 = K$$

$$= 2\int \frac{-dK}{K^2}$$

$$= -2\left(-\frac{1}{K}\right) + c$$

$$-2xdx = dK$$

$$-2xdx = dK$$

$$=-2\left(-\frac{1}{K}\right)+c$$

$$\frac{y}{x-x^3} = \frac{2}{K} + c$$

$$\frac{y}{x-x^3} = \frac{2}{1-x^2} + c$$

At
$$x = 2$$
, $y = -2$

$$\frac{-2}{2-8} = \frac{2}{1-4} + c$$

$$\frac{1}{3} = \frac{-2}{3} + c$$

$$\therefore$$
 C = 1

$$\frac{y}{x-x^3} = \frac{2}{1-x^2} + 1$$

Put
$$y = 3$$

$$\frac{y}{3-27} = \frac{2}{1-9} + 1$$

$$\frac{y}{-24} = -\frac{1}{4} + 1$$

$$\frac{y}{-24} = \frac{3}{4}$$

$$y = \frac{3}{4}(-24) = -18$$

12. The number of real solutions of $x^7 + 5x^3 + 3x + 1 = 0$ is equal to _____.

(B)
$$1$$

Ans. (B)

Sol.
$$f(x) = x^7 + 5x^3 + 3x + 1$$

 $f'(x) = 7x^6 + 15x^2 + 3 > 0$

 \therefore f(x) is strictly increasing function

$$x \to -\infty$$
, $y \to -\infty$

$$x \to \infty, y \to \infty$$

 \therefore no. of real solution = 1

13. Let the eccentricity of the hyperbola $H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ be } \sqrt{\frac{5}{2}} \text{ and length of its latus}$ rectum be $6\sqrt{2}$, If y = 2x + c is a tangent to the

hyperbola H, then the value of c² is equal to

- (A) 18
- (B)20
- (C) 24
- (D)32

Ans. (B)

Sol.
$$y = mx \pm \sqrt{a^2m^2 - b^2}$$

 $m = 2, c^2 = a^2m^2 - b^2$
 $c^2 = 4a^2 - b^2$
 $e^2 = 1 + \frac{b^2}{a^2}$

$$\frac{5}{2} = 1 + \frac{b^2}{a^2}$$

$$\frac{3}{2} = \frac{b^2}{a^2} \Longrightarrow b^2 = \frac{3a^2}{2}$$

$$\frac{2b^2}{a} = 6\sqrt{2}$$

$$\frac{2}{a} \times \frac{3a^2}{2} = 6\sqrt{2}$$

$$3a = 6\sqrt{2}$$

$$a = 2\sqrt{2}$$

$$b^2 = \frac{3}{2} \times 8 = 12$$

$$b = 2\sqrt{3}$$

$$\therefore c^2 = 4 \times 8 - 12$$

$$c^2 = 20$$

14. If the tangents drawn at the point O(0, 0) and

$$P(1+\sqrt{5},2)$$
 on the circle $x^2 + y^2 - 2x - 4y = 0$

intersect at the point Q, then the area of the triangle OPQ is equal to

$$(A) \frac{3+\sqrt{5}}{2}$$

(B)
$$\frac{4+2\sqrt{5}}{2}$$

(C)
$$\frac{5+3\sqrt{5}}{2}$$

$$(D) \frac{7+3\sqrt{5}}{2}$$

Ans. (C) Sol.

Tangent at O

$$-(x + 0) - 2(y + 0) = 0$$

$$\Rightarrow x + 2y = 0$$

Tangent at P

$$x(1 + \sqrt{5}) + y.2 - (x + 1 + \sqrt{5}) - 2(y + 2 = 0)$$

Put
$$x = -2y$$

$$-2y(1+\sqrt{5})+2y+2y-1-\sqrt{5}-2y-4=0$$

$$-2\sqrt{5} y = 5 + \sqrt{5} \implies y = \left(\frac{\sqrt{5} + 1}{2}\right)$$

$$Q\left(\sqrt{5}+1,-\frac{\sqrt{5}+1}{2}\right)$$

Length of tangent $OQ = \frac{5 + \sqrt{5}}{2}$

Area =
$$\frac{RL^3}{R^2 + L^2}$$

$$R = \sqrt{5}$$

$$=\frac{\sqrt{5}\times\left(\frac{5+\sqrt{5}}{2}\right)^3}{5+\left(\frac{5+\sqrt{5}}{2}\right)^2}$$

$$=\frac{\sqrt{5}}{2} \times \frac{4 \times \left(125 + 75 + 75\sqrt{5} + 5\sqrt{5}\right)}{\left(20 + 25 + 10\sqrt{5} + 5\right)}$$

$$=\frac{5+3\sqrt{5}}{2}$$

If two distinct point Q, R lie on the line of 15. intersection of the planes -x + 2y - z = 0 and 3x - 5y + 2z = 0 and $PQ = PR = \sqrt{18}$ where the point P is (1, -2, 3), then the area of the triangle PQR is equal to

(A)
$$\frac{2}{3}\sqrt{38}$$

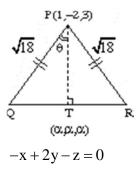
(B)
$$\frac{4}{3}\sqrt{38}$$

(C)
$$\frac{8}{3}\sqrt{38}$$

(D)
$$\sqrt{\frac{152}{3}}$$

Ans. (B)

Sol.



$$3x - 5y + 2z = 0$$

$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & -1 \\ 3 & -5 & 2 \end{vmatrix}$$

$$=\hat{i}(-1)-\hat{j}(1)+\hat{k}(-1)$$

$$\vec{n} = -\hat{i} - \hat{j} - \hat{k}$$

Equation of LOI is
$$\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$$

DR: of PT
$$\rightarrow \alpha - 1, \alpha + 2, \alpha - 3$$

DR: of QR
$$\rightarrow$$
 1, 1, 1

$$\Rightarrow (\alpha - 1) \times 1 + (\alpha + 2) \times 1 + (\alpha - 3) \times 1 = 0$$

$$3\alpha = 2$$

$$\alpha = \frac{2}{3}$$

$$PT^2 = \frac{1}{9} + \frac{64}{9} + \frac{49}{9}$$

$$PT^2 = \frac{114}{9}$$

$$PT^{2} = \frac{114}{9}$$

$$PT = \frac{\sqrt{114}}{3}$$

$$\cos \theta = \frac{\sqrt{114}}{3} \times \frac{1}{3\sqrt{2}} = \frac{\sqrt{57}}{9} = \frac{\sqrt{19 \times 3}}{3 \times 3}$$
$$= \frac{\sqrt{19}}{3\sqrt{3}}$$

$$\cos 2\theta = \frac{2 \times 19}{27} - 1 = \frac{11}{27}$$

$$\sin 2\theta = \sqrt{1 - \left(\frac{11}{27}\right)^2} = \frac{\sqrt{38}\sqrt{16}}{27}$$

$$=\frac{4}{27}\sqrt{38}$$

Area =
$$\frac{1}{2} \times \sqrt{18} \sqrt{18} \times \frac{4}{27} \sqrt{38}$$

$$=\frac{18}{2} \times \frac{4}{27} \sqrt{38} = \frac{36}{27} \sqrt{38} = \frac{4}{3} \sqrt{38}$$

- 16. The acute angle between the planes P_1 and P_2 , when P_1 and P_2 are the planes passing through the intersection of the planes 5x + 8y + 13z 29 = 0 and 8x 7y + z 20 = 0 and the points (2, 1, 3) and (0, 1, 2), respectively, is
 - (A) $\frac{\pi}{3}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{6}$
- (D) $\frac{\pi}{12}$

Ans. (A)

Sol. Equation of plane passing through the intersection

of planes 5x + 8y + 13z - 29 = 0 and 8x - 7y + z - 20 = 0 is

$$5x + 8y + 3z - 29 + \lambda (8x - 7y + z - 20) = 0$$
 and

if it is passing through (2,1,3) then $\lambda = \frac{7}{2}$

 P_1 : Equation of plane through intersection of 5x + 8y + 13z - 29 = 0 and 8x - 7y + z - 20 = 0 and the point (2, 1, 3) is

$$5x + 8y + 3z - 29 + \frac{7}{2}(8x - 7y + z - 20) = 0$$

$$\Rightarrow 2x - y + z = 6$$

Similarly P_2 : Equation of plane through intersection of

$$5x + 8y + 13z - 29 = 0$$
 and $8x - 7y + z - 20 = 0$
and the point $(0,1,2)$ is

$$\Rightarrow x + y + 2z = 5$$

Angle between planes = $\theta = \cos^{-1} \left(\frac{3}{\sqrt{6}\sqrt{6}} \right) = \frac{\pi}{3}$

- 17. Let the plane $P: \vec{r} \cdot \vec{a} = d$ contain the line of intersection of two planes $\vec{r} \cdot (\hat{i} + 3\hat{j} \hat{k}) = 6$ and $\vec{r} \cdot (-6\hat{i} + 5\hat{j} \hat{k}) = 7$. If the plane P passes through the point $(2, 3, \frac{1}{2})$, then the value of $\frac{|13\vec{a}|^2}{d^2}$ is equal to
 - (A) 90
- (B) 93
- (C)95
- (D) 97

Ans. (B)

Sol. Equation of plane passing through line of intersection of planes $P_1 : \vec{r} \left((\hat{i} + 3\hat{j} - \hat{k}) = 6 \right)$ and

$$P_2: \vec{r} \cdot (-6\hat{i} + 5\hat{j} - \hat{k}) = 7$$
 is

$$P_1 + \lambda P_2 = 0$$

$$\left(\overline{\mathbf{r}}\cdot\left(\hat{\mathbf{i}}+3\hat{\mathbf{j}}-\hat{\mathbf{k}}\right)-6\right)+\lambda\left(\overline{\mathbf{r}}\cdot\left(-6\hat{\mathbf{i}}+5\hat{\mathbf{j}}-\hat{\mathbf{k}}\right)-7\right)=0$$

and it passes through point $\left(2,3,\frac{1}{2}\right)$

$$\Rightarrow \left(2+9-\frac{1}{2}-6\right)+\lambda\left(-12+15-\frac{1}{2}-7\right)=0$$

$$\Rightarrow \lambda=1$$

Equation of plane is $\overline{r} \cdot (-5\hat{i} + 8\hat{j} - 2\hat{k}) = 13$

$$\left|\vec{a}\right|^2 = 25 + 64 + 4 = 93$$
; d = 13

Value of
$$\frac{\left|13\overline{a}\right|^2}{d^2} = 93$$

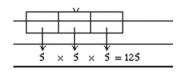
- **18.** The probability, that in a randomly selected 3-digit number at least two digits are odd, is
 - (A) $\frac{19}{36}$
- (B) $\frac{15}{36}$
- (C) $\frac{13}{36}$
- (D) $\frac{23}{36}$

Ans. (A)

Sol. Atleast two digits are odd

= exactly two digits are odd + exactly there 3 digits are odd

For exactly three digits are odd



For exactly two digits odd:

If 0 is used then : $2 \times 5 \times 5 = 50$

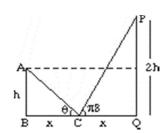
If 0 is not used then : ${}^{3}C_{1} \times 4 \times 5 \times 5 = 300$

Required Probability
$$=\frac{475}{900} = \frac{19}{36}$$

- 19. Let AB and PQ be two vertical poles, 160 m apart from each other. Let C be the middle point of B and Q, which are feet of these two poles. Let $\frac{\pi}{8}$ and θ be the angles of elevation from C to P and A, respectively. If the height of pole PQ is twice the height of pole AB, then $\tan^2 \theta$ is equal to
 - (A) $\frac{3-2\sqrt{2}}{2}$
- (B) $\frac{3+\sqrt{2}}{2}$
- (C) $\frac{3-2\sqrt{2}}{4}$
- (D) $\frac{3-\sqrt{2}}{4}$

Ans. (C)

Sol.



Let BC = CQ = x & AB = h and PQ = 2 h

$$\tan \theta = \frac{h}{x}, \tan \frac{\pi}{8} = \frac{2h}{x}$$

$$\frac{\tan\theta}{\tan\left(\frac{\pi}{8}\right)} = \frac{1}{2}$$

$$\tan \theta = \frac{1}{2} \tan \left(\frac{\pi}{8} \right) = \frac{1}{2} \left(\sqrt{2} - 1 \right)$$

$$\tan^2\theta = \frac{1}{4} \left(3 - 2\sqrt{2} \right)$$

20. Let p, q, r be three logical statements. Consider the compound statements

$$S_1: ((\sim p) \vee q) \vee ((\sim p) \vee r)$$
 and

$$S_2: p \rightarrow (q \vee r)$$

Then, which of the following is **NOT** true?

- (A) If S₂ is True, then S₁ is True
- (B) If S₂ is False, then S₁ is False
- (C) If S, is False, then S₁ is True
- (D) If S₁ is False, then S₂ is False

$$s_1: (\sim p \vee q) \vee (\sim p \vee r)$$

Sol.

$$\equiv \sim p \vee (q \vee r)$$

$$s_2: p \rightarrow (q \vee r)$$

$$\equiv \sim p \vee (q \vee r) \rightarrow By$$
 conditional law

$$S_1 \equiv S_2$$

SECTION-B

1. Let R_1 and R_2 be relations on the set $\{1, 2, ..., 50\}$ such that

 $R_1 = \{(p, p^n) : p \text{ is a prime and } n \ge 0 \text{ is an integer}\}$ and $R_2 = \{(p, p^n) : p \text{ is a prime and } n = 0 \text{ or } 1\}.$

Then, the number of elements in $R_1 - R_2$ is

Sol. Here, $p, p^n \in \{1, 2, ... 50\}$

Now p can take values

2,3,5,7,11,13,17,23,29,31,37,41,43 and 47.

: we can calculate no. of elements in R, as $(2, 2^\circ), (2,2^1) ... (2,2^5)$

$$(3,3^{\circ}), \dots (3,3^{3})$$

$$(5,5^{\circ}), \dots (5,5^{2})$$

$$(7,7^{\circ}), \dots (7,7^{2})$$

$$(11,11^{\circ}), \dots (11,11^{1})$$

And rest for all other two elements each

$$\therefore n(R_1) = 6 + 4 + 3 + 3 + (2 \times 10) = 36$$

Similarly for R,

$$\therefore \quad n(R_2) = 2 \times 14 = 28$$

$$\therefore$$
 $n(R_1)-n(R_2)=36-28=8$

2. The number of real solutions of the equation $e^{4x} + 4e^{3x} - 58e^{2x} + 4e^{x} + 1 = 0 \text{ is } \underline{\hspace{1cm}}.$ Ans. (2)

Sol.
$$e^{4x} + 4e^{3x} - 58e^{2x} + 4e^{x} + 1 = 0$$

Let $f(x) = e^{2x} \left(e^{2x} + \frac{1}{e^{2x}} + 4 \left(e^{x} + \frac{1}{e^{x}} \right) - 58 \right)$
 $e^{x} + \frac{1}{e^{x}}$
Let $h(t) = t^{2} + 4t - 58 = 0$

$$t = \frac{-4 \pm \sqrt{16 + 4.58}}{2}$$

$$\frac{-4 \pm 2\sqrt{62}}{2}$$

$$t_1 = -2 + 2\sqrt{62}$$

$$t_2 = -2 - 2\sqrt{62}$$
 (not possible)

 $t \ge 2$

$$e^x + \frac{1}{e^x} = -2 + 2\sqrt{62}$$

$$e^{2x} - (-2 + 2\sqrt{62}) e^x + 1 = 0$$

$$(-2+2\sqrt{62})-4$$

$$4 + 4.62 - 8\sqrt{62} - 4$$

$$248 - 8\sqrt{62} > 0$$

$$\frac{-b}{2a} > 0$$

both roots are positive

2 real roots

3. The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to _____.

Sol. We have

Variance =
$$\frac{\sum_{r=1}^{15} x_r^2}{15} - \left(\frac{\sum_{r=1}^{15} x_r}{15}\right)^2$$

Now, as per information given in equation

$$\frac{\sum x_r^2}{15} - 8^2 = 3^2 \Rightarrow \sum x_r^2 = \log 5$$

Now, the new $\sum x_r^2 = \log 5 - 5^2 + 20^2 = 1470$

And, new
$$\sum x_r = (15 \times 8) - 5 + (20) = 135$$

$$\therefore \quad \text{Variance} = \frac{1470}{15} - \left(\frac{135}{15}\right)^2 = 98 - 81 = 17$$

4. If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are coplanar vectors and $\vec{a} \cdot \vec{c} = 5$, $\vec{b} \perp \vec{c}$, then 122 $(c_1 + c_2 + c_3)$ is equal to

Ans. (150)

Sol.
$$\overline{a} \cdot \overline{c} = 5 \Rightarrow 2c_1 + c_2 + 3c_3 = 5$$
 ...(1)
 $\overline{b} \cdot \overline{c} = 0 \Rightarrow 3c_1 + 3c_2 + c_3 = 0$...(2)

And
$$\left[\overline{a}\ \overline{b}\ \overline{c}\right] = 0 \Rightarrow \begin{vmatrix} c_1 & c_2 & c_3 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{vmatrix} = 0$$

$$\Rightarrow 8c_1 - 7c_2 - 3c_3 = 0$$
 ...(3)

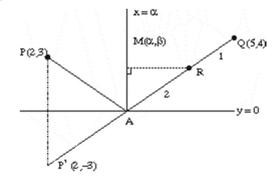
By solving (1), (2), (3) we get

$$c_1 = \frac{10}{122}, c_2 = \frac{-85}{122}, c_3 = \frac{225}{122}$$

$$122(c_1+c_2+c_3)=150$$

5. A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2:1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be (α, β) . Then, the value of $7\alpha + 3\beta$ is equal to

Sol.



By observation we see that $A(\alpha, 0)$.

And $\beta = y$ -coordinate of R

$$= \frac{2 \times 4 + 1 \times 0}{2 + 1} = \frac{8}{3} \dots (1)$$

Now P' is image of P in y = 0 which will be P'(2,-3)

$$\therefore \quad \text{Equation of P'Q is } (y+3) = \frac{4+3}{5-2} (x-2)$$

i.e.
$$3y + 9 = 7x - 14$$

$$A \equiv \left(\frac{23}{7}, 0\right)$$
 by solving with $y = 0$

$$\therefore \alpha = \frac{23}{7}$$

...(2

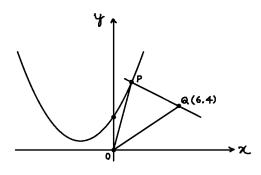
By
$$(1)$$
, (2)

$$7\alpha + 3\beta = 23 + 8 = 31$$

6. Let ℓ be a line which is normal to the curve $y=2x^2+x+2$ at a point P on the curve. If the point Q(6, 4) lies on the line ℓ and O is origin, then the area of the triangle OPQ is equal to _____.

Ans. (13)

Sol.
$$y = 2x^2 + x + 2$$



$$\frac{\mathrm{dy}}{\mathrm{dx}} = 4x + 1$$

Let P be (h, k), then normal at P is

$$y-k = -\frac{1}{4h+1}(x-h)$$

This passes through Q (6,4)

$$\therefore 4 - k = -\frac{1}{4h+1} (6-h)$$

$$\Rightarrow$$
 $(4h+1)(4-k)+6-h=0$

Also
$$k = 2h^2 + h + 2$$

$$\therefore (4h+1)(4-2h^2-h-2)+6+h=0$$

$$\Rightarrow 4h^3 - 3h^2 + 3h - 8 = 0$$

$$\Rightarrow$$
 h = 1, k = 5

Now area of $\triangle OPQ$ will be $=\frac{1}{2}\begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 5 \\ 1 & 6 & 4 \end{vmatrix} = 13$

7. Let $A = \{1, a_1, a_2, \dots, a_{18}, 77\}$ be a set of integers with $1 < a_1 < a_2 < \dots, < a_{18} < 77$. Let the set $A + A = \{x + y : x, y \in A\}$ contain exactly 39 elements. Then, the value of $a_1 + a_2 + \dots + a_{18}$ is equal to _____.

Ans. (702)

Sol. $a_1, a_2, a_3, ..., a_{18}, 77$

are in AP i.e. 1, 5, 9, 13, ..., 77.

Hence $a_1 + a_2 + a_3 + ... + a_{18} = 5 + 9 + 13 + ... + 18$ terms = 702

8. The number of positive integers k such that the constant term in the binomial expansion of $\left(2x^3 + \frac{3}{x^k}\right)^{12}, x \neq 0 \text{ is } 2^8 \cdot \ell, \text{ where } \ell \text{ is an odd}$

integer, is __.

Ans. (2)

Sol.
$$\left(2x^3 + \frac{3}{x^k}\right)^{12}$$

$$t_{r+1} = {}^{12}C_r (2x^3)^r (\frac{3}{x^k})^{12-r}$$

$$x^{3r-(12-r)k} \rightarrow constant$$

$$\therefore 3r - 12k + rk = 0$$

$$\Rightarrow k = \frac{3r}{12 - r}$$

∴ possible values of r are 3,6,8,9,10 and corresponding values of k are 1,3,6,9,15

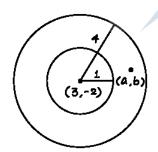
Now
$$^{12}C_r = 220,924,495,220,66$$

- \therefore possible values of k for which we will get 2^8 are 3, 6
- **9.** The number of elements in the set

$$\{z=a+ib\in\mathbb{C}: a,b\in\mathbb{Z} \text{ and } 1<|z-3+2i|<4\}\quad is$$

Ans. (40)

Sol. 1 < |Z - 3 + 2i| < 4



$$1 < (a-3)^2 + (b+2)^2 < 16$$

$$(0,\pm 2),(\pm 2,0),(\pm 1,\pm 2),(\pm 2,\pm 1)$$

$$(\pm 2,\pm 3),(3\pm,\pm 2),(\pm 1,\pm 1),(2\pm,\pm 2)$$

$$(\pm 3,0),(0,\pm 3),(\pm 3\pm 1),(\pm 1,\pm 3)$$

Total 40 points

10. Let the lines
$$y + 2x = \sqrt{11} + 7\sqrt{7}$$
 and $2y + x = 2\sqrt{11} + 6\sqrt{7}$ be normal to a circle $C: (x-h)^2 + (y-k)^2 = r^2$. If the line

$$\sqrt{11}y - 3x = \frac{5\sqrt{77}}{3} + 11$$
 is tangent to the circle C,
then the value of $(5h - 8k)^2 + 5r^2$ is equal to ____.
Ans. (816)

Sol. Normal are

$$y + 2x = \sqrt{11} + 7\sqrt{7},$$

$$2y + x = 2\sqrt{11} + 6\sqrt{7}$$

Center of the circle is point of intersection of normals i.e.

$$\left(\frac{8\sqrt{7}}{3},\sqrt{11}+\frac{5\sqrt{7}}{3}\right)$$

Tangent is
$$\sqrt{11}y - 3x = \frac{5\sqrt{77}}{3} + 11$$

Radius will be \perp distance of tangent from center

i.e.
$$4\sqrt{\frac{7}{5}}$$

Now
$$(5h - 8k)^2 + 5r^2 = 816$$