CHEMISTRY

JEE-MAIN EXAMINATION - JUNE, 2022

28 June S - 01 Paper Solution

SECTION-A

- **1.** The incorrect statement about the imperfections in solids is:
 - (A) Schottky defect decreases the density of the substance
 - (B) Interstitial defect increases the density of the substance.
 - (C) Frenkel defect does not alter the density of the substance.
 - (D) Vacancy defect increases the density of the substance.

Ans. (D)

- **Sol.** Due to vacancy defect density of the substance will decrease.
- The Zeta potential is related to which property of colloids"
 - (A) Colour
 - (B) Tyndall effect
 - (C) Charge on the surface of colloidal particles
 - (D) Brownian movement

Ans. (C)

Sol. The potential difference between the fixed and

diffused layer of charges in a colloidal particle is called zeta potential

- 3. Element "E" belongs to the period 4 and group 16 of the periodic table. The valence shell electron configuration of the element, which is just above 'E' in the group is
 - (A) $3s^2$. $3p^4$
- (B) $3d^{10}$. $4s^2$, $4p^4$
- (C) $4d^{10}$. $5s^2$, $5p^4$
- (D) $2s^2$, p4

Ans. (A)

Sol. $E \Rightarrow [Ar] 3d^{10} 4s^2 4p^4$ Element above $E \Rightarrow [Ne] 3s^2 3p^4$

4. Given are two statements one is labelled as Assertion A and other is labelled as Reason R. Assertion A: Magnesium can reduce Al₂O₃ at a temperature below 1350°C, while above 1350°C aluminium can reduce MgO.

Reason R: The melting and boiling points of magnesium are lower than those of aluminium. In light of the above statements, choose most appropriate answer from the options given below:

- (A) Both A and R are correct. and R is correct explanation of A.
- (B) Both A and R are correct. but R is NOT the correct explanation of A.
- (C) A is correct R is not correct.
- (D) A is not correct. R is correct.

Ans. (B)

Sol. From Ellingham diagram given in NCERT, it can be seen that Mg, MgO line crosses Al, Al₂O₃ line after 1350°C hence assertion is true.

Yes, Mg have lower MP and BP than aluminium but it does not explain the above fact.

- 5. Dihydrogen reacts with CuO to give
 - (A) CuH_2
 - (B) Cu
 - (C) Cu_2O
 - (D) $Cu(OH)_2$

Ans. (B)

- **Sol.** $CuO + H_2 \rightarrow Cu + H_2O$ (under hot conditions)
- 6. Nitrogen gas is obtained by thermal decomposition of
 - (A) $Ba(NO_3)_2$
- (B) Ba(N_3)₂
- (C) NaNO₂
- (D) NaNO₃

Ans. (B)

Sol. $Ba(N_3)_2 \rightarrow Ba + 3N_2$

7. Given below are two statements:

Statement -I :The pentavalent oxide of group- 15 element. E_2O_5 . is less acidic than trivalent oxide. E_2O_3 . of the same element.

Statement -II : The acidic character of trivalent oxide of group 15 elements. E_2O_3 . decreases down the group.

In light of the above statements, choose most appropriate answer from the options given below:

- (A) Both Statement I and Statement II are true.
- (B) Both Statement I and Statement II are false.
- (C) Statement I true. but statement II is false.
- (D) Statement I is false but statement II is true.

Ans. (D)

Sol. As +ve oxidation state increases, EN of element increases hence acidic character increases. Down the group, non-metallic character decreases, acidic character decreases.

Acidic character : $E_2O_5 > E_2O_3$

Down the group, acidic character of E₂O₃ decreases

- 8. Which one of the lanthanoids given below is the most stable in divalent form?
 - (A) Ce (Atomic Number 58)
 - (B) Sm (Atomic Number 62)
 - (C) Eu (Atomic Number 63)
 - (D) Yb (Atomic Number 70)

Ans. (C)

Sol.
$$E^{\circ}_{M^{3+}/M^{2+}} \Rightarrow Eu \quad Yb$$

 $-0.35 \quad -1.05$

Hence, due to more reduction potential in Eu as compared to Yb, it can concluded that Eu^{2+} is more stable than Yb^{2+} .

9. Given below are two statements:

Statement I : $[Ni(CN)4]^{2^{-}}$ is square planar and diamagnetic complex. with dsp^{2} hybridization for Ni but $[Ni(CO)_{4}]$ is tetrahedral. paramagnetic and with sp^{3} -hybridication for Ni.

Statement II: [NiCl₄] ²⁻ and [Ni(CO)₄] both have same d-electron configuration have same geometry and are paramagnetic.

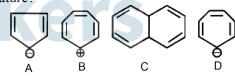
In light the above statements, choose the correct answer form the options given below:

- (A) Both Statement I and Statement II are true.
- (B) Both Statement I and Statement II are false.
- (C) Statement I is correct but statement II is false.
- (D) Statement I is incorrect but statement II is true.

Sol. $[Ni(CN)_4]^{2-}$: d^8 configuration, SFL, sq. planar splitting (dsp^2) , diamagnetic.

[Ni(CO)₄]: d¹⁰ config (after excitation), SFL, tetrahedral splitting (sp³), diamagnetic.

[NiCl₄]²⁻: d⁸ config, WFL, tetrahedral splitting (sp³), paramagnetic(2 unpaired e⁻).


- 10. Which amongst the following is not a pesticide?
 (A) DDT
 - (B) Organophosphates
 - (C) Dieldrin
 - (D) Sodium arsenite

Ans. (D)

- 11. Which one of the following techniques is not used to spot components of a mixture separated on thin layer chromatographic plate?
 - (A) I₂ (Solid)
 - (B) U.V. Light
 - (C) Visualisation agent as a component of mobile phase
 - (D) Spraying of an appropriate reagent

Ans. (C)

12. Which of the following structures are aromatic in nature?

- (A) A,B,C and D
- (B) Only A and B
- (C) Only A and C
- (D) Only B, C and D

Ans. (B)

Sol. A, B aromatic

C,D is nonaromatic

13. The major product (P) in the reaction

Ph
$$\longrightarrow$$
 Br \longrightarrow $?(P)$

[Ph is $-C_6H_5$] is

$$(A) \xrightarrow{Ph} \xrightarrow{Br} Br$$

$$(C) \xrightarrow{Ph} \xrightarrow{Br} Br$$

$$(D) \xrightarrow{Ph} Br$$

Br

Ans. (C)

14. The correct structure of product 'A' formed in the following reaction.

PhCHO + Ph · CHO
$$\xrightarrow{\text{NaOD}}$$
 A + Ph - C - O
(Ph is - C₆H₅)

$$(A) \overset{OD}{Ph} \overset{H}{H}$$

$$(B) \overset{OH}{\underset{H}{\bigvee}}$$

$$(C) \overset{\text{OD}}{\vdash} H$$

Sol. PhCH = O + PhCH = O
$$\xrightarrow{\text{OD/D}_2\text{O}} \text{PhCH}_2\text{OD+PhCO}_2^-$$

15. Which one of the following compounds is inactive towards S_N1 reaction?

Sol. Sol. The carbocation fromed is very unstable.

So it is inactive towards $S_{\rm N}1$

16. Identify the major product formed in the following sequence of reactions:

Ans. (C)
$$\begin{array}{c}
NH_2 \\
Br \\
+H_2O
\end{array}$$

$$\begin{array}{c}
Br \\
NANO_2 + HCI
\end{array}$$

$$\begin{array}{c}
Br \\
H_3PO_2 \\
Br \\
Br
\end{array}$$

$$\begin{array}{c}
Br \\
Br
\end{array}$$

Sol.

- A primary aliphatic amine on reaction with nitrous 17. acid in cold (273 K) and there after raising temperature of reaction mixture to room temperature (298 K). Gives a/an
 - (A) nitrile
- (B) alcohol
- (C) diazonium salt
- (D) secondary amine

Ans. (B)

$$\textbf{Sol.} \quad \text{R-NH}_2 \xrightarrow{\quad \text{NaNO}_2 \\ \quad +\text{HCl} \quad} \text{R-N}_2^+ \xrightarrow{\quad \text{H}_2\text{O} \quad} \text{R-OH}$$

- 18. Which one of the following is **NOT** a copolymer?
 - (A) Buna-S
- (B) Neoprene
- (C) PHBV
- (D) Butadiene-styrene

Ans. (B)

- Sol. Buna-S, PHBr and Butadiene-styrene copolymer. Only neoprene is namopolymer.
- Stability of α Helix structure of proteins depends 19. upon
 - (A) dipolar interaction
 - (B) H-bonding interaction
 - (C) van der Waals forces
 - (D) π -stacking interaction

Ans. (B)

- The formula of the purple colour formed in 20. Laissaigne's test for sulphur using sodium nitroprusside is
 - (A) $NaFe[Fe(CN)_6]$
- (B) $Na[Cr(NH_3)_2(NCS)_4]$

(C) $Na_2[Fe(CN)_5(NO)]$ (D) $Na_4[Fe(CN)_5(NOS)]$

Ans. (D)

 $Na_2S + Na_2[Fe(CN)_5NO] \rightarrow Na_4[Fe(CN)_5NO_5]$ Sol.

SECTION-B

A 2.0 g sample containing MnO₂ is treated with 1. HCl liberating Cl₂. The Cl₂ gas is passed into a solution of KI and 60.0 mL of 0.1 M Na₂S₂O₃ is required to titrate the liberated iodine. The percentage of MnO₂ in the sample is _____. (Nearest integer)

> [Atomic masses (in u) Mn = 55; Cl = 35.5; O = 16, I = 127, Na = 23, K = 39, S = 32

Ans. (13)

Sol.
$$MnO_2 + HCl \longrightarrow Cl_2 + Mn^{+2}$$

 $6 \text{ meq} \qquad 6 \text{ meq}$
 $= 3 \text{ m mol}$
 $Cl_2 + KI \longrightarrow Cl^- + I_2$
 $6 \text{ meq} \qquad 6 \text{ meq}$
 $I_2 + Na_2S_2O_3 \longrightarrow I^- + Na_2S_4O_6$
 $6 \text{ meq} \qquad 6 \text{ m mol}$
 $= 6 \text{ meq}$
 $\%MnO_2 = \frac{3 \times 10^{-3} \times 87}{2} \times 100$
 $= 13.05\%$
Ans. 13

If the work function of a metal is 6.63×10^{-19} J, the 2. maximum wavelength of the photon required to remove a photoelectron from the metal is _____ nm. (Nearest integer)

[Given : $h = 6.63 \times 10^{-34} \text{ J s}$, and $c = 3 \times 10^8 \text{ m s}^{-1}$]

Ans. (300)

Sol.
$$\phi = 6.63 \times 10^{-19} J = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{\lambda}$$

 $\Rightarrow \lambda = 3 \times 10^{-7} m = 300 \text{ nm}$

The hybridization of P exhibited in PF₅ is sp^xd^y. 3. The value of y is _____.

Ans. (1)

- **Sol.** $PF_5 \Rightarrow sp^3d$ hybridisation (5 sigma bonds, zero lone pair on central atom) Value of v = 1
- 4.0 L of an ideal gas is allowed to expand 4. isothermally into vacuum until the total volume is 20 L. The amount of heat absorbed in this expansion is _____ L atm.

Ans. (0)

Sol. For free expansion:
$$\begin{aligned} P_{\text{ext}} = 0 \text{ , } w = 0 \\ q = 0 \text{ , } \Delta U = 0 \end{aligned}$$

Ans. 0

5. The vapour pressures of two volatile liquids A and B at 25°C are 50 Torr and 100 Torr, respectively. If the liquid mixture contains 0.3 mole fraction of A, then the mole fraction of liquid B in the vapour phase is $\frac{x}{17}$. The value of x is _____.

Ans. (14)

Sol.
$$\frac{y_B}{1 - y_B} = \frac{P_B^o}{P_A^o} \left[\frac{X_B}{1 - X_B} \right]$$
$$\Rightarrow \frac{y_B}{1 - y_B} = \frac{100}{50} \left[\frac{0.7}{0.3} \right] = \frac{14}{3}$$
$$\Rightarrow y_B = \frac{14}{17}$$

6. The solubility product of a sparingly soluble salt A_2X_3 is 1.1×10^{-23} . If specific conductance of the solution is $3 \times 10^{-5} \text{ S m}^{-1}$, the limiting molar conductivity of the solution is $x \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$. The value of x is _____.

Ans. (3)

$$A_{2}X_{3(s)} \rightleftharpoons 2A_{(aq)}^{+3} + 3X_{(aq)}^{-2}$$
so lub ility = sM 2s 3s
$$(2s)^{2}(3s)^{3} = 1.1 \times 10^{-23}$$

$$108 s^{5} = 1.1 \times 10^{-23}$$

$$s \approx 10^{-5} M = 10^{-5} \frac{\text{mol}}{L} = 0.01 \frac{\text{mol}}{m^{3}}$$

$$Now \land_{m} \approx \land_{m}^{\infty} = \frac{k}{m} = \frac{k}{s}$$

$$\Rightarrow \land_{m}^{\infty} = \frac{3 \times 10^{-5}}{0.01} = 3 \times 10^{-3} \text{ S-m}^{2}/\text{mol}$$

- 7. The quantity of electricity in Faraday needed to reduce 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} is

Ans. (6)

Sol.
$$\frac{\operatorname{Cr}_2\operatorname{O}_7^{-2} + 6\operatorname{e}^- \longrightarrow 2\operatorname{Cr}^{+3}}{1\operatorname{mol} \quad 6\operatorname{mol}}$$

$$\Rightarrow \text{number of faradays} = \text{moles of electrons}$$

$$= 6$$

For a first order reaction $A \rightarrow B$, the rate constant, $k=5.5\times10^{14}$ The time required for 67% completion of reaction is $x \times 10^{-1}$ times the half life of reaction. The value of x is _____ (Nearest integer)

(Given:
$$\log 3 = 0.4771$$
)

Ans. (16)

Sol.
$$t_{67\%} = \frac{1}{k} \ln \left(\frac{1}{1 - 0.67} \right) = \frac{t_{1/2}}{\ln 2} \times \ln \left[\frac{1}{1 - \frac{2}{3}} \right]$$

$$t_{67\%} = \frac{t_{1/2}}{\log 2} \times \log 3 = \frac{t_{1/2} \times 0.4771}{0.301}$$

$$\Rightarrow t_{67\%} = 1.585 \times t_{1/2}$$

$$X \times 10^{-1} = 1.585$$

$$\Rightarrow X = 15.85$$
Ans. 16

- 9. Number of complexes which will exhibit synergic bonding amongst, [Cr(CO)₆], [Mn(CO)₅] and [Mn₂(CO)₁₀] is _____.

 Ans. (3)
- **Sol.** Carbonyl complex compounds have tendency to show synergic bonding.
- 10. In the estimation of bromine, 0.5 g of an organic compound gave 0.40 g of silver bromide. The percentage of bromine in the given compound is _______% (nearest integer)

(Relative atomic masses of Ag and Br are 108u and 80u, respectively).

Ans. (34)

Sol
$$0.C \longrightarrow AgBr$$

 $0.5g \quad 0.4g$

mol of Br = mol of AgBr = $\frac{0.4}{188}$

% Br = %Br =
$$\frac{0.4}{188} \times 80$$

0.5

= 34.04%

=

=

=