# **JEE-MAIN EXAMINATION - JUNE, 2022**

# 26 June S - 02 Paper Solution

#### **SECTION-A**

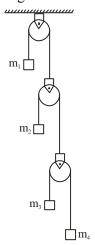
- **1.** The dimension of mutual inductance is :
  - (A)  $[ML^2 T^{-2} A^{-1}]$
- (B)  $[ML^2T^{-3}A^{-1}]$
- (C)  $[ML^2T^{-2}A^{-2}]$
- (D)  $[ML^2T^{-3}A^{-2}]$

### Ans. (C)

**Sol.**  $e_2$ : induced emf in secondary coil

i<sub>1</sub>: Current in primary coil

M: Mutual inductance


$$e_2 = -M \frac{di_1}{dt}$$

$$M = -\frac{e_2}{\frac{di_1}{dt}}$$

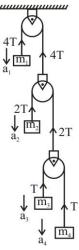
$$\begin{bmatrix} M \end{bmatrix} = \frac{\begin{bmatrix} e_2 \end{bmatrix}}{\begin{bmatrix} di_1 \\ dt \end{bmatrix}} = \frac{\begin{bmatrix} M \\ q \end{bmatrix}}{\begin{bmatrix} di_1 \\ dt \end{bmatrix}} = \frac{\begin{bmatrix} ML^2T^{-2} \end{bmatrix}}{\begin{bmatrix} AT \end{bmatrix}}$$

$$= [ML^2T^{-2}A^{-2}]$$

2. In the arrangement shown in figure a<sub>1</sub>,a<sub>2</sub>, a<sub>3</sub> and a<sub>4</sub> are the accelerations of masses m<sub>1</sub>,m<sub>2</sub>,m<sub>3</sub> and m<sub>4</sub> respectively. Which of the following relation is true for this arrangement?



(A) 
$$4a_1 + 2a_2 + a_3 + a_4 = 0$$


(B) 
$$a_1 + 4a_2 + 3a_3 + a_4 = 0$$

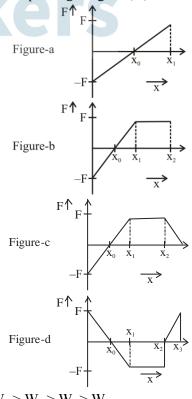
(C) 
$$a_1 + 4a_2 + 3a_3 + 2a_4 = 0$$

(D) 
$$2a_1 + 2a_2 + 3a_3 + a_4 = 0$$

Ans. (A)

Sol.




Using costraint

$$\sum \vec{T} \cdot \vec{a} = 0$$

$$-4Ta_1 - 2Ta_2 - Ta_3 - Ta_4 = 0$$

$$4a_1 + 2a_2 + a_3 + a_4 = 0$$

3. Arrange the four graphs in descending order of total work done; where W<sub>1</sub>, W<sub>2</sub>, W<sub>3</sub> and W<sub>4</sub> are the work done corresponding to figure a, b, c and d respectively.



(A) 
$$W_3 > W_2 > W_1 > W_4$$

(B) 
$$W_3 > W_2 > W_4 > W_1$$

(C) 
$$W_2 > W_3 > W_4 > W_1$$

(D) 
$$W_2 > W_3 > W_1 > W_4$$

Ans. (A)

**Sol.** Work done = area under F - x curve. Area below x-axis is negative & area above x-axis is positive.

$$W_3 > W_2 > W_1 > W_4$$

4. Solid spherical ball is rolling on a frictionless horizontal plane surface about its axis of symmetry. The ratio of rotational kinetic energy of the ball to its total kinetic energy is :-

- (A)  $\frac{2}{5}$  (B)  $\frac{2}{7}$  (C)  $\frac{1}{5}$  (D)  $\frac{7}{10}$

Ans. (B)

**Sol.**  $K_{total} = K_{rotational} + K_{Translational}$ 

$$\boldsymbol{K}_{total} = \frac{1}{2}\boldsymbol{I}_{cm}\boldsymbol{\omega}^2 + \frac{1}{2}\boldsymbol{m}\boldsymbol{V}_{cm}^2$$

 $v_{cm} = R\omega$  for pure rolling

$$I_{cm} = \frac{2}{5}mR^2$$

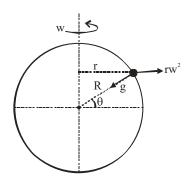
$$K_{\text{Reot}} = \frac{1}{2} I_{\text{cm}} \omega^2 = \frac{1}{2} \times \frac{2}{5} mR^2 \times \frac{v_{\text{cm}}^2}{R^2} = \frac{1}{2} mv_{\text{cm}}^2$$

$$K_{\text{Rotal}} = \frac{1}{5} \text{mv}_{\text{cm}}^2 + \frac{1}{2} \text{mv}_{\text{cm}}^2 = \frac{7}{10} \text{mv}_{\text{cm}}^2$$

$$\frac{K_{Rot}}{K_{Total}} \frac{\frac{1}{5}mv_{cm}^{2}}{\frac{7}{10}mv_{cm}^{2}} = \frac{2}{7}$$

5. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

> Assertion A: If we move from poles to equator, the direction of acceleration due to gravity of earth always points towards the center of earth without any variation in its magnitude.


> Reason R: At equator, the direction of acceleration due to the gravity is towards the center of earth.

> In the light of above statements, choose the correct answer from the options given below:

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true but R is NOT the correct explanation of A.
- (C) A is true but R is false
- (D) A is false but R is true

Ans. (D)

Sol.



Effective acceleration due to gravity is the resultant of g & rw2 whose direction & magnitude depends upon  $\theta$ . Hence assertion is false.

When  $\theta = 0^{\circ}$  (at equator), effective acceleration is radially inward.

6. If  $\rho$  is the density and  $\eta$  is coefficient of viscosity of fluid which flows with a speed v in the pipe of diameter d, the correct formula for Reynolds number Re is:

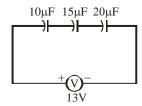
Ans. (C)

Reynold's number is given by — Sol.

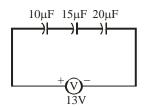
7. A flask contains argon and oxygen in the ratio of 3:2 in mass and the mixture is kept at 27°C. The ratio of their average kinetic energy per molecule respectively will be:

(A) 3 : 2

(B) 9:4


(C) 2:3

(D) 1:1


Ans. (Bonus)

**Sol.** Average K.E./molecule = -

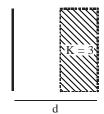
8. The charge on capacitor of capacitance  $15\mu F$  in the figure given below is :



(A) 60μc (B) 130μc (C) 260 μc (D) 585 μc **Ans. (A)** 



Sol.


$$\frac{1}{C_{eq}} = \frac{1}{10} + \frac{1}{15} + \frac{1}{20} = \frac{12 + 8 + 6}{120} = \frac{26}{120}$$

$$C_{eq} = \frac{60}{13} \mu F$$

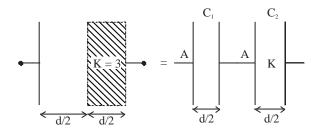
$$Q = \frac{13 \times 60}{13} = 60 \mu C$$

Charge on each capacitor is same

- : they are in series.
- 9. A parallel plate capacitor with plate area A and plate separation d=2 m has a capacitance of 4  $\mu$ F. The new capacitance of the system if half of the space between them is filled with a dielectric material of dielectric constant K=3 (as shown in figure) will be:



 $(A) 2\mu F$ 


(B) 32µF

(C) 6µF

(D) 8uF

Ans. (C)

Sol. 
$$C_{\text{original}} = \frac{A\varepsilon_0}{d}$$



$$C_1 = \frac{A\varepsilon_0}{d/2} = \frac{2A\varepsilon_0}{d} = C$$

$$C_2 = \frac{KA\varepsilon_0}{d/2} = \frac{2KA\varepsilon_0}{d} = \frac{6A\varepsilon_0}{d} = 3C$$

 $C_1 \& C_2$  are in series

$$C_{\text{new}} = \frac{C_1 C_2}{C_1 + C_2} = \frac{C \times 3C}{C + 3C} = \frac{3C}{4}$$
$$= \frac{3}{4} \times \frac{2A\varepsilon_0}{d} = \frac{3}{2} \times \frac{A\varepsilon_0}{d}$$

$$C_{new} = \frac{3}{2}C_{original}$$
$$= \frac{3}{2} \times 4 = 6\mu F$$

10. Sixty four conducting drops each of radius 0.02 m and each carrying a charge of 5  $\mu$ C are combined to form a bigger drop. The ratio of surface density of bigger drop to the smaller drop will be:

- (B) 4:1
- (C) 1:8
- (D) 8:1

## Ans. (B)

**Sol.** Let R = radius of combined dropr = radius of smaller drop

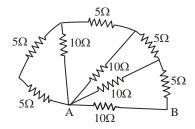
Volume will remain same

$$\frac{4}{3}\pi R^{3} = 64 \times \frac{4}{3}\pi r^{3}$$

$$R = 4r$$

Q = 64q;

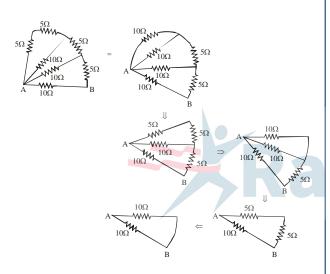
q: charge of smaller drop


Q: Charge of combined drop

$$\frac{\sigma_{\text{bigger}}}{\sigma_{\text{smaller}}} = \frac{\frac{Q}{4\pi R^2}}{\frac{q}{4\pi r^2}} = \frac{Q}{q} \cdot \frac{r^2}{R^2}$$

$$=64\frac{r^2}{16r^2}=4$$

$$\frac{\sigma_{\text{bigger}}}{\sigma_{\text{smaller}}} = \frac{4}{1}$$


11. The equivalent resistance between points A and B in the given network is:



- $(A) 65\Omega$
- (B)  $20\Omega$
- (C)  $5\Omega$
- (D)  $2\Omega$

Ans. (C)

Sol.



 $R_{AB} = 5\Omega$ 

- 12. A bar magnet having a magnetic moment of 2.0 × 10<sup>5</sup> JT<sup>-1</sup>, is placed along the direction of uniform magnetic field of magnitude B=  $14 \times 10^{-5}$  T. The work done in rotating the magnet slowly through  $60^{\circ}$  from the direction of field is :
  - (A) 14 J (B) 8.4 J
- (C)4J
- (D) 1.4 J

Ans. (A)

**Sol.** Work done = MB  $(\cos\theta_1 - \cos\theta_2)$ 

$$\theta_1 = 0^{\circ}, \theta_2 = 60^{\circ}$$

$$= 2 \times 10^5 \times 14 \times 10^{-5} (1 - 1/2)$$

$$= 14 \text{ J}$$

Two coils of self inductance  $L_1$  and  $L_2$  are 13. connected in series combination having mutual inductance of the coils as M. The equivalent self inductance of the combination will be:

- (A)  $\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{M}$  (B)  $L_1 + L_2 + M$
- (C)  $L_1 + L_2 + 2M$

Ans. (D)

Current on both the inductor is in opposite Sol.

direction.

Hence:

$$L_{eq} = L_1 + L_2 - 2M$$

- A metallic conductor of length 1m rotates in a 14. vertical plane parallel to east-west direction about one of its end with angular velocity 5 rad/s. If the horizontal component of earth's magnetic field is  $0.2 \times 10^{-4}$  T, then emf induced between the two ends of the conductor is:
  - $(A) 5\mu V$
- (B)  $50\mu V$  (C) 5mV
- (D) 50mV

Ans. (B)

Sol. emf induced between the two ends = - $\frac{0.2 \times 10^{-4} \times 5 \times 1}{2} = 0.5 \times 10^{-4} = 50 \times 10^{-6} \text{ V} = 50 \mu\text{V}$ 

- Which is the correct ascending order of 15. wavelengths?
  - (A)  $\lambda_{visible} < \lambda_{X-ray} < \lambda_{gamma-ray} < \lambda_{microwave}$
  - (B)  $\lambda_{gamma-ray} < \lambda_{X-ray} < \lambda_{visible} < \lambda_{microwave}$
  - (C)  $\lambda_{X-ray} < \lambda_{gamma-ray} < \lambda_{visible} < \lambda_{microwave}$
  - (D)  $\lambda_{\text{microwave}} < \lambda_{\text{visible}} < \lambda_{\text{gamma-ray}} < \lambda_{\text{X-ray}}$

Ans. (B)

**Sol.** From electromagnetic wave spectrum.

 $\lambda$  increases  $\longrightarrow$ 

| γ-ray | x-rays | ultra  | visible | infrared | microwave | Radio |
|-------|--------|--------|---------|----------|-----------|-------|
|       |        | violet |         |          |           | wave  |

$$\lambda_{gamma\text{-ray}} < \lambda_{X\text{-ray}} < \lambda_{visible} < \lambda_{microwave}$$

**16.** For a specific wavelength 670 nm of light coming from a galaxy moving with velocity v, the observed wavelength is 670.7 nm.

The value of v is:

(A) 
$$3 \times 10^8 \text{ ms}^{-1}$$

(B) 
$$3 \times 10^{10} \text{ ms}^{-1}$$

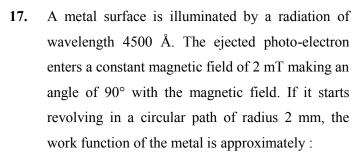
(C) 
$$3.13 \times 10^5 \,\mathrm{ms}^{-1}$$

(D) 
$$4.48 \times 10^5 \text{ ms}^{-1}$$

**Sol.**  $\lambda_{\text{emitted}} = 670 \text{ nm}$ 

$$\lambda_{obs} = 670.7 \text{ nm}$$

$$v = ?$$


$$c = 3 \times 10^8 \text{ m/s}$$

If 
$$v \ll c$$

$$\frac{\lambda_{obs} - \lambda_{emitted}}{\lambda_{emitted}} = \frac{v}{c}$$

$$\frac{670.7 - 670}{670} = \frac{v}{c}$$

$$V = 3.13 \times 10^5 \text{ m/s}$$



**Sol.** 
$$\lambda = 4500 \text{ Å}$$

$$B = 2mT$$
,  $R = 2mm$ 

$$R = \frac{\sqrt{2Km}}{qB}$$

$$\frac{\left(qBR\right)^{2}}{2m} = K$$

$$\frac{\left(1.6 \times 10^{-19} \times 2 \times 10^{-3} \times 2 \times 10^{-3}\right)^{2}}{2 \times 9.1 \times 10^{-31}} = K$$

$$\frac{\left(6.4\right)^2}{2\times9.1}\times\frac{10^{-50}}{10^{-31}}=K$$

$$K = 2.25 \times 10^{-19} \text{ J}$$

$$=\frac{2.25\times10^{-19}}{1.6\times10^{-19}}eV=1.40eV$$

$$E = \frac{12400}{4500} = 2.76 \,\text{eV}$$

$$\phi = E - K = (2.76 - 1.40) \text{ eV} = 1.36 \text{ eV}$$

**18.** A radioactive nucleus can decay by two different processes. Half-life for the first process is 3.0 hours while it is 4.5 hours for the second process. The effective half-life of the nucleus will be:

- (A) 3.75 hours
- (B) 0.56 hours
- (C) 0.26 hours
- (D) 1.80 hours

Ans. (D)

**Sol.** 
$$\lambda_{eq} = \lambda_1 \lambda + 2$$

$$\frac{\ln 2}{\left(t_{1/2}\right)_{eq}} = \frac{\ln 2}{\left(t_{1/2}\right)_1} + \frac{\ln 2}{\left(t_{1/2}\right)_2}$$

$$(t_{1/2})_{eq} = \frac{(t_{1/2})_1 \times (t_{1/2})_2}{(t_{1/2})_1 + (t_{1/2})_2}$$

$$=\frac{3\times4.5}{3+4.5}=\frac{3\times4.5}{7.5}=\frac{3\times3}{5}=1.8 \text{ hr}$$

- **19.** The positive feedback is required by an amplifier to act an oscillator. The feedback here means:
  - (A) External input is necessary to sustain ac signal in output.
  - (B) A portion of the output power is returned back to the input.
  - (C) Feedback can be achieved by LR network.
  - (D) The base-collector junction must be forward biased.

Ans. (B)

**Sol.** When the amplifier connects with positive feedback, it acts as the oscillator the feedback here is positive feedback which means some amount of voltage is given to the input.

- **20.** A sinusoidal wave  $y(t) = 40\sin(10 \times 10^6 \pi t)$  is amplitude modulated by another sinusoidal wave  $x(t) = 20\sin(1000\pi t)$ . The amplitude of minimum frequency component of modulated signal is:
  - (A) 0.5
- (B) 0.25
- (C) 20
- (D) 10

## Ans. (D)

**Sol.** 
$$y(t) = 40 \sin(10 \times 10^6 \pi t)$$

$$x(t) = 20\sin(1000\pi t)$$

$$\Rightarrow \omega_{\rm c} = 10^7 \, \pi$$

$$\omega_{\rm m} = 10^3 \ \pi$$

$$A_{\rm C} = 40$$

$$A_m = 20$$

Equation of modulated wave =  $(A_C + A_m \sin \omega_m t)$  $\sin \omega_c t$ 

$$= A_{c} \left( 1 + \frac{A_{m}}{A_{c}} \sin \omega_{m} t \right) \sin \omega_{c} t$$

$$= A_{c} \left( 1 + \mu \sin \omega_{m} t \right) \sin \omega_{c} t, \qquad \mu = 0$$

$$=A_{c}\sin\omega_{c}t+\frac{\mu A_{c}}{2}\Big[\cos\big(\omega_{c}-\omega_{m}\big)t-\cos\big(\omega_{c}+\omega_{m}\big)t\Big]$$

Amplitude of minimum frequency

$$\frac{\mu A_c}{2} = \frac{A_m}{A_c} \times \frac{A_c}{2} = \frac{A_m}{2} = 10$$

#### **SECTION-B**

- 1. A ball is projected vertically upward with an initial velocity of 50 ms<sup>-1</sup> at t = 0s. At t = 2s. another ball is projected vertically upward with same velocity. At t =\_\_\_\_s, second ball will meet the first ball (g = 10 ms<sup>-2</sup>).
  - Ans. (6)

**Sol.** Let they meet at t = t

So first ball gets t sec.

&  $2^{nd}$  gets (t-2) sec. & they will meet at same height

$$h_1 = 50t - \frac{1}{2}gt^2$$

$$h_2 = 50(t-2) - \frac{1}{2}g(t-2)^2$$

$$h_1 = h_2$$

$$50t - \frac{1}{2}gt^2 = 50(t-2) - \frac{1}{2}g(t-2)^2$$

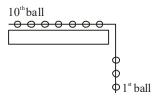
$$100 = \frac{1}{2}g \left[t^2 - (t-2)^2\right]$$

$$100 = \frac{10}{2} [4t - 4]$$

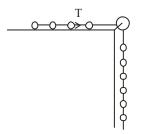
$$5 = t - 1$$

$$t = 6 \text{ sec.}$$

2. A batsman hits back a ball of mass 0.4 kg straight in the direction of the bowler without changing its initial speed of 15 ms<sup>-1</sup>. The impulse imparted to the ball is


## Ans. (12)

**Sol.** Impulse = change in momentum


$$= m[v - (-v)] = 2 mv$$

$$= 2 \times 0.4 \times 15 = 12 \text{ Ns}$$

A system to 10 balls each of mass 2 kg are connected via massless and unstretchable string. The system is allowed to slip over the edge of a smooth table as shown in figure. Tension on the string between the 7<sup>th</sup> and 8<sup>th</sup> ball is \_\_\_\_\_\_N when 6<sup>th</sup> ball just leaves the table.



Sol.



$$a = \frac{6mg}{10m} = \frac{6g}{10} = \frac{3g}{5}$$

taking 8,9,10 together



Т

$$T = 3 \text{ ma}$$

$$=3m\times\frac{3g}{5}$$

$$= 36 \text{ N}$$

4. A geyser heats water flowing at a rate of 2.0 kg per minute from 30°C to 70°C. If geyser operates on a gas burner, the rate of combustion of fuel will be g min<sup>-1</sup>

[Heat of combustion =  $8 \times 10^3 \text{ Jg}^{-1}$ 

Specific heat of water =  $4.2 \text{ Jg}^{-1} \circ \text{C}^{-1}$ ]

**Sol.** m = 2000 gm/min

Heat required by water/min =  $mS\Delta T$ 

$$= (2000) \times 4.2 \times 40 \text{ J/min}$$

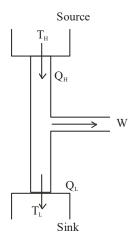
= 336000 J/min

The rate of combustion =  $\left(\frac{dm}{dt}L\right)$  = 336000J / min

$$\frac{dm}{dt} = \frac{336000}{8 \times 10^3} g / min$$

$$= 42 \text{ gm/min}$$

**5.** A heat engine operates with the cold reservoir at temperature 324 K.


The minimum temperature of the hot reservoir, if the heat engine takes 300 J heat from the hot reservoir and delivers 180 J heat to the cold reservoir per cycle, is \_\_\_\_\_\_K.

**Sol.** 
$$T_c = 324 \text{ k}$$

$$T_H = ?$$

$$Q_{\rm H} = 300 \, {\rm J}$$

 $Q_{L} = 180 \text{ J}$ 



$$1 - \frac{Q_{L}}{Q_{H}} = 1 - \frac{T_{L}}{T_{H}}$$

$$\frac{\mathbf{Q}_{\mathrm{L}}}{\mathbf{Q}_{\mathrm{H}}} = \frac{T_{\mathrm{L}}}{T_{\mathrm{H}}}$$

$$T_{\rm H} = \frac{Q_{\rm H}}{Q_{\rm L}} \times T_{\rm L} = \frac{300}{180} \times 324 = 540 \,\rm K$$

6. A set of 20 tuning forks is arranged in a series of increasing frequencies. If each fork gives 4 beats with respect to the preceding fork and the frequency of the last fork is twice the frequency of the first, then the frequency of last fork is \_\_\_\_\_Hz.

Ans. (152)

**Sol.** 
$$f_1 = f$$

$$f_2 = f + 4$$

$$f_3 = f + 2 \times 4$$

$$f_4 = f + 3 \times 4$$

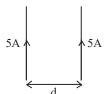
$$f_{20} = f + 19 \times 4$$

$$f + (19 \times 4) = 2 \times f$$

$$f = 76 Hz$$
.

Frequency of last tuning forks = 2f

$$= 152 \text{ Hz}$$


7. Two 10 cm long, straight wires, each carrying a current of 5A are kept parallel to each other. If each wire experienced a force of 10<sup>-5</sup> N, then separation between the wires is cm.

#### Ans. (5)

**Sol.** It should be mentioned, 10 cm wire is part of long wire

Force experienced by unit length of wire

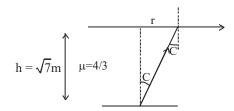
$$=\frac{\mu_0 I_1 I_2}{2\pi d},\ I_1=I_2=5A$$



Force experienced by wires of length 10 cm

$$= \frac{\mu_0 I_1 I_2}{2\pi d} \times 10 \times 10^{-2}$$

$$10^{-5} = \frac{2 \times 10^{-7} \times 5 \times 5}{d} \times 10 \times 10^{-2}$$


$$d = 50 \times 10^{-3} \text{ m}$$

$$d = 50 \times 10^{-1} \text{ cm} = 5 \text{ cm}.$$

8. A small bulb is placed at the bottom of a tank containing water to a depth of  $\sqrt{7}$  m. The refractive index of water is  $\frac{4}{3}$ . The area of the surface of water through which light from the bulb can emerge out is  $x\pi$  m<sup>2</sup>. The value of x is

Ans. (9)

**Sol.** C : Criticle angle



$$\tan C = \frac{r}{h}$$

$$r = h \tan C$$

$$\sin C = \frac{1}{\mu} = \frac{3}{4}$$

$$\tan C = \frac{3}{\sqrt{7}}$$

$$r = \sqrt{7} \times \frac{3}{\sqrt{7}} = 3$$

Area of surface =  $\pi r^2 = 9\pi m^2$ 

9. A travelling microscope is used to determine the refractive index of a glass slab. If 40 divisions are there in 1 cm on main scale and 50 Vernier scale divisions are equal to 49 main scale divisions, then least count of the travelling microscope is  $\times 10^{-6}$  m.

Ans. (5)

**Sol.** 
$$50 \text{ VSD} = 49 \text{ MSD}$$

$$1VSD = \frac{49}{50}MSD$$

Least count = 1 MSD - 1 VSD

$$= \left(1 - \frac{49}{50}\right) MSD = \frac{1}{50} MSD$$

$$1MSD = \frac{1}{40}cm$$

Least count = 
$$\frac{1}{50 \times 40}$$
 cm

$$= \frac{1}{2000} \text{ cm} = \frac{1}{2} \times 10^{-5} \text{ m}$$

$$= 0.5 \times 10^{-5} \text{ m}$$

$$= 5 \times 10^{-6} \text{ m}$$

The stopping potential for photoelectrons emitted from a surface illuminated by light of wavelength 6630 Å is 0.42 V. If the threshold frequency is  $x \times 10^{13}$ /s, where x is \_\_\_\_\_ (nearest integer).

(Given, speed light =  $3 \times 10^8$  m/s, Planck's constant =  $6.63 \times 10^{-34}$  Js)

Ans. (35)

**Sol.** Stopping potential 
$$V_0 = 0.42 \text{ V}$$

$$\lambda = 6630 \text{ Å}$$

$$E = \phi + eV_0$$

E: energy of incident photon

V<sub>0</sub>: Stopping potential

$$\phi = E - eV_0$$

$$E = \frac{12400}{6630} \text{ eV} = 1.87 \text{ eV}$$

$$\phi = (1.87 - 0.42) = 1.45 \text{ eV}$$

$$\phi = hv_0$$
;  $v_0$ : threshold frequency

$$1.45 \times 1.6 \times 10^{-19} = 6.63 \times 10^{-34} \times v_0$$

$$v_0 = 0.35 \times 10^{15}$$

$$=35 \times 10^{13} \text{ sec}^{-1}$$

$$= 35$$