CHEMISTRY

JEE-MAIN EXAMINATION - JUNE, 2022

24 June S - 02 Paper Solution

SECTION-A

1. 120 of an organic compound that contains only carbon and hydrogen gives 330g of CO_2 and 270g of water on complete combustion. The percentage of carbon and hydrogen, respectively are.

(A) 25 and 75	(B) 40 and 60
---------------	---------------

(C) 60 and 40 (D) 75 and 25

Ans. (D)

Sol. Given mass of organic compound =

120

mass of $CO_2(g) = 330 g$

mass of $H_2O(\ell) = 270 \text{ g}$

mass of carbon = $n_{CO_2} \times 12$

 $=\frac{330}{44}\times 12 = 90g$

% of carbon = $\frac{90}{120} \times 100 = 75\%$

mass of hydrogen = $n_{H,O} \times 2$

$$=\frac{270}{18} \times 2 = 30g$$

$$2\%$$
 of hydrogen = $\frac{30}{120} \times 100 = 25\%$

2. The energy of one mole of photons of radiation of wavelength 300 nm is

(Given : h = 6.63×10^{-34} Js, N_A = 6.02×10^{23} mol⁻¹, c = 3×10^8 ms⁻¹) (A) 235 kJ mol⁻¹ (B) 325 kJ mol⁻¹ (C) 399 kJ mol⁻¹ (D) 435 kJ mol⁻¹ Ans. (C)

Sol. Energy of one mole of photons =
$$\frac{hc}{\lambda} \times N_A$$

$$=\frac{6.63\times10^{-34}\times3\times10^{8}}{300\times10^{-9}}\times6.02\times10^{23}$$

= 399.13 × 10³ Joule/mole

= 399 kJ / mole

3. The correct order of bound orders of C_2^{2-} , N_2^{2-} and O_2^{2-} is, respectively.

(A)
$$C_2^{2-} < N_2^{2-} < O_2^{2-}$$
 (B) $O_2^{2-} < N_2^{2-} < C_2^{2-}$
(C) $C_2^{2-} < O_2^{2-} < N_2^{2-}$ (D) $N_2^{2-} < C_2^{2-} < O_2^{2-}$
Ans. (B)

Sol. Species		Bond order	
	C_{2}^{2-}	3	
	N_{2}^{2-}	2	
	O_{2}^{2-}	1	

4. At 25°C and 1 atm pressure, the enthalpies of combustion are as given below:

Substance	H ₂	C(graphite)	$C_2H_6(g)$
$\frac{\Delta_{\rm c} {\rm H}^{\Theta}}{{\rm kJmol}^{-1}}$	-286.0	-394.0	-1560.0

The enthalpy of formation of ethane is

$(A) + 54.0 \text{ kJ mol}^{-1}$	$(B) - 68.0 \text{ kJ mol}^{-1}$
$(C) - 86.0 \text{ kJ mol}^{-1}$	(D) +97.0 kJ mol ^{-1}

Ans. (C)

- Sol. $C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$ $\Delta_CH(C_2H_6) = 2\Delta_fH CO_2(g) + 3\Delta_fH(H_2O,\ell)$ $-\Delta_fH(C_2H_6,g)$ $-1560 = 2(-394) + 3 (-286) - \Delta_fH(C_2H_6,g)$ $\Delta_fH(C_2H_6,g) = -86 \text{ kJ/mole}$ 5. For a first order reaction, the time required for
- completion of 90% reaction, the time required for of the reaction. The value of 'x' is (Given: $\ln 10 = 2.303$ and $\log 2 = 0.3010$) (A) 1.12 (B) 2.43 (C) 3.32 (D) 33.31

Ans. (C)

Sol. Given $t_{0.90} = t_{0.90} = xt_{1/2}$

First order rate constant

$$K = \frac{\ln 2}{t_{1/2}} = \frac{1}{xt_{1/2}} \ln \frac{A_0}{A_0 - A_0 \times \frac{90}{100}}$$
$$\frac{\ln 2}{t_{1/2}} = \frac{\ln 10}{xt_{1/2}}$$
$$x = \frac{\ln 10}{\ln 2} = \frac{2.303}{2.303 \times 0.3010} = 3.32$$

6. Metals generally melt at very high temperature. Amongst the following, the metal with the highest melting point will be

(A) Hg	(B) Ag
(C) Ga	(D) Cs

Ans. (B)

- Sol. Hg, Ga, Cs are liquid near room temperature But Ag(silver) is solid.
- 7. Which of the following chemical reactions represents Hall-Heroult Process?
 - (A) $\operatorname{Cr}_2\operatorname{O}_3 + 2\operatorname{Al} \to \operatorname{Al}_2\operatorname{O}_3 + 2\operatorname{Cr}$
 - $(B) 2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$
 - (C) $FeO + CO \rightarrow Fe + CO_2$
 - (D) $2\left[\operatorname{Au}(\operatorname{CN})_{2}\right]_{(\operatorname{aq})}^{-} + Zn(s) \rightarrow 2\operatorname{Au}(s) + \left[Zn(\operatorname{CN}_{4})\right]^{2-}$

Ans. (B)

- **Sol.** Hall Heroult process is the major industrial process for extraction of aluminium.
- 8. In the industrial production of which of the following, molecular hydrogen is obtained as a byproduct?

Ans. (A)	
(C)Na metal	(D) Na ₂ CO ₃
(A) NaOH	(B) NaCl

Sol. Sodium hydroxide is generally prepared commercially by electrolysis of sodium chloride in castner Kellner cell.

at cathode : $Na + e^{-} \xrightarrow{Hg} Na - amalgum$

Anode :
$$Cl^{-} \longrightarrow \frac{1}{2}Cl_{2} + e^{-}$$

The Na–amalgam is treated with water to give sodium hydroxide and hydrogen gas :

2Na (amalgam) + $H_2O \rightarrow 2NaOH + H_2 + 2Hg$

- **9.** Which one of the following compounds is used as a chemical in certain type of fire extinguishers?
 - (A) Baking Soda (B) Soda ash
 - (C) Washing Soda (D) Caustic Soda

Ans. (A)

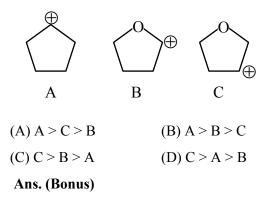
- Sol.Sodiumhydrogencarbonate(Bakingsoda),NaHCO3 is used in the fire extinguishers.
- **10.** PCl_5 is well known. but NCl_5 is not. Because.
 - (A) nitrogen is less reactive than phosphorous.
 - (B) nitrogen doesn't have d-orbitals in its valence shell.
 - (C) catenation tendency is weaker in nitrogen than phosphorous.
 - (D) size of phosphorous is larger than nitrogen.

Ans. (B)

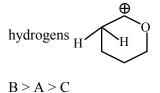
Sol. PCl₅ forms five bonds by using the d-orbitals to "expand the octet". But NCl₅ does not exist because there are no d-orbitals in the valence shell (2nd shell). Therefore there is no way to expand the octet. 11. Transition metal complex with highest value of crystal field splitting (Δ_0) will be

(A)
$$\left[\operatorname{Cr} \left(\operatorname{H}_{2} \operatorname{O} \right)_{6} \right]^{3+}$$
 (B) $\left[\operatorname{Mo} \left(\operatorname{H}_{2} \operatorname{O} \right)_{6} \right]^{3+}$
(C) $\left[\operatorname{Fe} \left(\operatorname{H}_{2} \operatorname{O} \right)_{6} \right]^{3+}$ (D) $\left[\operatorname{Os} \left(\operatorname{H}_{2} \operatorname{O} \right)_{6} \right]^{3+}$

Ans. (D)


- **Sol.** CFSE of octahedral complexes with water is greater for 5d series metal centre ion as compared to 3d and 4d series metal centre.
- 12. Some gases are responsible for heating of atmosphere (green house effect). Identify from the following the gaseous species which does not cause it.
 - (A) CH_4 (B) O_3 (C) H_2O (D) N_2

Ans. (D)


Sol. CH₄, O₃ and H₂O causes global warming in Tropospheric level.

N₂ does not cause global warming.

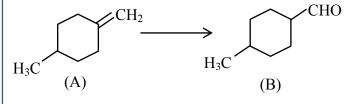
13. Arrange the following carbocations in decreasing order of stability.

Sol. Carbocation is stabilised by resonance with lone pairs on oxygen atom and +H effect of $2\underline{a}$

D' II' C

14. Given below are two statements.

Statement I : The presence of weaker π - bonds make alkenes less stable than alkanes.

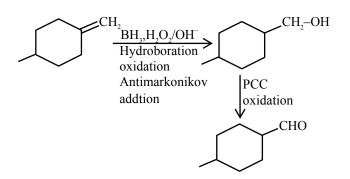

Statement II : The strength of the double bond is greater than that of carbon-carbon single bond.

In the light of the above statements, choose the *correct* answer from the options given below.

- (A) Both Statement I and Statement II are correct.
- (B) Both Statement I and Statement II are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct.

Ans. (A)

15. Which of the following reagents/ reactions will convert 'A' to 'B'?


(A) PCC oxidation

(B) Ozonolysis

- (C) BH_3 , H_2O_2 / ^-OH followed by PCC oxidation
- (D)HBr, hydrolysis followed by oxidation by $K_2 C r_2 O_7 \; . \label{eq:K2}$

Ans. (C)

Sol. BH_3 , H_2O_2 /OH followed by PCC oxidation.

- 16. Hex-4-ene-2-ol on treatment with PCC gives 'A'.'A' on reaction with sodium hypoiodite gives 'B', which on further heating with soda lime gives 'C'. The compound 'C' is
 - (A) 2- pentene (B) proponaldehyde
 - (C) 2-butene (D) 4-methylpent-2-ene

Ans. (C)

Sol. $CH_{3}-CH=CH-CH_{2}-CH-CH_{3}$ $PCC \downarrow OH$ $CH_{3}-CH=CH-CH_{2}-CH-CH_{3}$ (A) $NaOI \downarrow O$ $CH_{3}-CH=CH-CH_{2}-COOH + CHI_{3}$ (B) $NaOH+CaO \downarrow -CO_{2}$ $CH_{3}-CH=CH-CH_{3}$ (C)But-2-ene

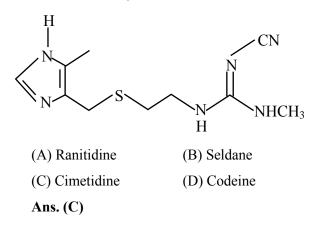
 The conversion of propan-1-ol to n-butylamine involves the sequential addition of reagents. The correct sequential order of reagents is.

(A)(i) SOCl₂ (ii) KCN (iii) H₂/Ni,Na(Hg)/C₂H₅OH
(B) (i) HCl (ii) H₂/Ni, Na(Hg)/C₂H₅OH
(C) (i) SOCl₂ (ii) KCN (iii) CH₃NH₂
(D) (i) HCl (ii) CH₃NH₂

Sol.

$$\begin{array}{c|c} CH_{3}-CH_{2}-CH_{2}-OH \longrightarrow CH_{3}-CH_{2}-CH_{2}-CH_{2}NH_{2} \\ \hline n-Butanamine \\ SOCl_{2} & & \uparrow H_{2}/Ni, Hg/C_{2}H_{5}OH \\ CH_{3}-CH_{2}-CH_{2}-CI \xrightarrow{KCN} CH_{3}-CH_{2}-CH_{2}-CN \end{array}$$

18. Which of the following is **not** an example of a condensation polymer?


(A) Nylon 6,6	(B) Decron
(C) Buna-N	(D) Silicone

Ans. (C)

Sol. Buna-N is an addition copolymer of 1,3-butadiene and acrylonitrile.

$$\begin{array}{c} \mathrm{CH}_{2} = \mathrm{CH} - \mathrm{CH} = \mathrm{CH}_{2} + \mathrm{CH}_{2} = \mathrm{CH} \\ & & \\ \mathrm{CN} \\ [-\mathrm{CH}_{3} - \mathrm{CH} = \mathrm{CH} - \mathrm{CH}_{2} - \mathrm{CH}_{2} - \mathrm{CH}_{-}]_{n} \\ & & \\ \mathrm{Buna-N} & & \\ \mathrm{CN} \end{array}$$

19. The structure shown below is of which well-known drug molecule?

20. In the flame test of a mixture of salts, a green flame with blue centre was observed. Which one of the following cations may be present?

(A) Cu^{2+}	(B) Sr ²⁺
(C) Ba ²⁺	(D) Ca ²⁺
Ans. (A)	

Ans. (A)

Sol.	Ion	Colour of the flame
	(A) Cu^{+2}	green flame with blue centre
	(B) Sr ²⁺	Crimson Red
	(C) Ba ²⁺	Apple green
		SECTION D

SECTION-B

1. At 300 K, a sample of 3.0 g of gas A occupies the same volume as 0.2 g of hydrogen at 200 K at the same pressure. The molar mass of gas A is _____ g mol⁻¹ (nearest integer) Assume that the behaviour of gases as ideal. (Given: The molar mass of hydrogen (H₂) gas is 2.0 g mol⁻¹)

Ans. (45)

Sol. Given : Ideal gas A and H_2 gas at same pressure and volume.

From ideal gas equation pv = nRT

 $\mathbf{n}_1 \mathbf{T}_1 = \mathbf{n}_2 \mathbf{T}_2$

 $\frac{3}{\text{GMM of A}} \times 300 = \frac{0.2}{2} \times 200$

GMM of A = 45 g/mole

 A company dissolves 'X' amount of CO₂ at 298 K in 1 litre of water to prepare soda water

 $X = _$ × 10⁻³g. (nearest integer)

(Given: partial pressure of CO_2 at 298 K= 0.835 bar.

Henry's law constant for CO_2 at 298 K = 1.67 kbar. Atomic mass of H,C and O is 1, 12 and 6 g mol⁻¹, respectively)

Ans. (1222 & 1223)

Sol. From Henry law

 $P = K_{\rm H} X_{\rm CO_2}$

$$0.835 = 1.67 \times 10^{3} \times 1.67 \times 10^{3} \times \frac{w_{CO_{2}} / 44}{\frac{w_{CO_{2}}}{44} + \frac{1000}{18}}$$
$$w_{CO_{2}} = 1.2228 g = 1222.8 \times 10^{-3} g$$
Or

$$P = K_{H}X_{CO_{2}}$$

$$0.835 = 1.67 \times 10^{3} \times \frac{n_{CO_{2}}}{n_{CO_{2}} + n_{H_{2}O}}$$

$$0.835 = 1.67 \times 10^{3} \times \frac{w_{CO_{2}} / 44}{\frac{1000}{18}}$$

$$w_{CO_{2}} = 1.2222g = 1222.2 \times 10^{-3}g$$

PCl₅ dissociates as

3.

 $PCl_{5}(g) \Longrightarrow PCl_{3}(g) + Cl_{2}(g)$

5 moles of PCl₅ are placed in a 200 litre vessel which contains 2 moles of N₂ and is maintained at 600 K. The equilibrium pressure is 2.46 atm. The equilibrium constant K_p for the dissociation of PCl₅ is _____ × 10⁻³. (nearest integer)

(Given: R = 0.082 L atm K^{-1} mol⁻¹ : Assume ideal gas behaviour)

Ans. (1107)

- Given : 2 mole of N_2 gas was present as inert gas. Sol. Equilibrium pressure = 2.46 atm $PCl_5(g) \Longrightarrow PCl_3(g) + C\ell_2(g)$ t = 05 0 0 $t = Eq^m$ 5 - xx х from ideal gas equation PV = nRT $2.46 \times 200 = (5 - x + x + x + 2) \times 0.082 \times 600$ x = 3 $K_{p} = \frac{n_{PCl_{3}} \times n_{Cl_{2}}}{n_{PCl}} \times \left| \frac{P_{total}}{n_{total}} \right|$ $\frac{3\times3}{2}\times\frac{2.46}{10}=1.107=1107\times10^{-3}$
- 4. The resistance of conductivity cell containing 0.01 M KCl solution at 298 K is 1750 Ω . If the conductively of 0.01 M KCl solution at 298 K is 0.152 × 10⁻³ S cm⁻¹, then the cell constant of the conductivity cell is_____× 10⁻³ cm⁻¹. Ans. (266)

Sol. $K = \frac{1}{R} \times \text{cell constant}$ $0.152 \times 10^{-3} = \frac{1}{1750}$ cell constant

cell constant = 266×10^{-3}

- 5. When 200 mL of 0.2 M acetic acid is shaken with 0.6 g of wood charcoal, the final concentration of acetic after adsorption is 0.1 M. The mass of acetic acid adsorbed per garm of carbon is _____ g.
 Ans. (2)
- **Sol.** weight of wood charcoal = 0.6 g

Mass of acetic acid adsorbed = $\frac{M_1V_1 - M_2V_2}{1000} \times 60$

$$= \frac{0.2 \times 200 - 0.1 \times 200}{1000} \times 60$$

= 1.2 g

Mass of acetic acid adsorbed per gram of

carbon = $\frac{1.2}{0.6} = 2$

6. (a) Baryte, (b) Galena, (c) Zinc blende and(d) Copper pyrites. How many of these minerals are sulphide based?

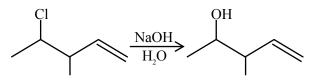
Ans. (3)

Sol.

- (1) Baryte : BaSO₄
- (2) Galena : PbS
- (3) Zinc blende : ZnS

(4) Copper pyrite : CuFeS₂

sulphide (S^{2–}) ores


- Manganese (VI) has ability to disproportionate in acidic solution. The difference in oxidation states of two ions it forms in acidic solution is ______
 Ans. (3)
- Sol. MnO_4^{2-} disproportionates in a neutral or acidic solution to give MnO_4^- and Mn^{+4}

 $3MnO_4^{2-} + 3H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$ O.S. of Mn in $MnO_4^- = +7$ O.S. of Mn in $MnO_2 = +4$ difference = 3

- 8. 0.2 g of an organic compound was subjected to estimation of nitrogen by Dumas method in which volume of N₂ evolved (at STP) was found to be 22.400 mL. The percentage of nitrogen in the compound is _____.[nearest integer] (Given: Molar mass of N₂ is 28 mol⁻¹. Molar volume of N₂ at STP : 22.4 L) Ans. (14)
- Sol. weight of organic compound = 0.2g mass of N₂(g) evolved = $\frac{22.4 \times 10^{-3}}{22.4} \times 28$ = 28 × 10⁻³g % of N = $\frac{28 \times 10^{-3}}{0.2} \times 100 = 14$ 9. NaOH P H₂O (Major Product)

Consider the above reaction. The number of π electrons present in the product 'P' is ____. Ans. (2)

Sol. Number of π electron = 2

- In alanylglycylleucylalanylvaline, the number of peptide linkages is _____.
 Ans. (4)
- Sol. There are Five amino acids and four peptide linkages.